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Abstract

Backdoor attacks are among the most prominent security
threats to deep learning models. Traditional backdoors rely
on fixed trigger patterns (e.g., a red square) that existing de-
fenses can often effectively remove. However, recent attacks
embed semantic triggers that vary with the input and blend
with meaningful features, rendering prior defenses ineffec-
tive. We propose MARTINI, a novel backdoor mitigation
framework that addresses both traditional and semantic
backdoors. MARTINI reconstructs backdoor samples via a
dedicated trigger reconstruction procedure, producing ma-
licious inputs that replicate the injected attack effect across
a spectrum of attacks. Using these reconstructed samples
paired with their correct labels, MARTINI then hardens the
model through retraining to neutralize the targeted misclas-
sification. Our evaluation on 14 types of backdoor attacks
in image classification shows that MARTINI can reduce the
attack success rate (ASR) from 96.56% to 5.17% on av-
erage, outperforming 12 state-of-the-art backdoor removal
approaches, which at best reduce the ASR to 26.56%. It can
also mitigate backdoors in self-supervised learning, object
detection and NLP sentiment analysis.

1. Introduction
Deep learning is widely used in various critical applications,
such as autonomous driving [3], face recognition [44], and
disease diagnosis [26]. Despite their near-perfect perfor-
mance on these tasks, it is not difficult for attackers to ma-
nipulate the behavior of deep learning systems and induce
attack-intended output. For example, backdoor vulnerabil-
ities in deep neural networks can be triggered by adding
backdoor triggers to inputs, causing misclassification to a
target label [18, 34].

A common backdoor employs static trigger patterns,
such as a small square patch with a solid color [18]. These
trigger patterns are easy to construct and can be easily
learned by deep learning models during training, as they
are simple features. However, their distinctive features

make them easily distinguishable from benign features of
the original learning task. For example, a red patch pat-
tern is very different from a dog image in animal classifica-
tion tasks. Therefore, many defense techniques are able to
successfully remove backdoor effects from attacked mod-
els [27, 30, 65, 71].

However, a clear separation between backdoor features
and clean-task features is not a necessary condition for a
successful backdoor attack. There is a body of seman-
tic backdoor attacks that modify the entire input, making
changes either closely relevant to the main content or vi-
sually invisible [2, 6]. Different perturbations are applied
to different inputs based on the input content. For exam-
ple, DFST [7] leverages a generative model (GAN) to in-
ject a certain style (e.g., sunrise color style) into the in-
put. WaNet [41] leverages elastic image warping to deform
an image through distortion transformation (e.g., distorting
straight lines). The unique nature of these attacks renders
most existing defenses less effective.

To defend against both traditional and semantic back-
doors, we propose a novel backdoor mitigation technique
MARTINI(“Mitigating bAckdooRs via TrIgger reconstruc-
tion and model hardeNIng”). Specifically, it reconstructs
backdoor-like samples from a compromised model using
only a small set of clean examples, closely reproducing the
injected backdoor effect. It then pairs these reconstructed
samples with their correct labels and retrain the suspect
model, thereby neutralizing the induced misclassifications.

MARTINI can model the trigger function for a wide range
of backdoors. It manipulates abstract features instead of raw
pixels to transform the input and achieve the backdoor ef-
fect, inducing targeted misclassification. Specifically, given
the feature representation of a clean input (from a pre-
trained encoder), MARTINI leverages a unique transforma-
tion layer to mutate the feature representation. Its novel
design allows us to express a wide range of attacks through
feature mutation. We use gradient descent to update the
transformation layer so that the feature perturbation, as de-
fined by the layer, can change the model’s classification to
a target label. As a result, the trained transformation layer
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Figure 1. Examples of backdoor triggers (2nd and 3rd rows) and
inverted triggers by MARTINI (last two rows).

captures the backdoor vulnerability in the model, if any.
Our contributions are summarized as follows:

• We propose a novel and effective technique, MARTINI, for
mitigating hidden backdoors injected by adversaries.

• We develop a general formulation of backdoor trigger
functions using a novel transformation layer. This design
allows us to model a wide range of existing attacks, and
consequently, training with our generated backdoor sam-
ples can improve model robustness against those attacks.

• We evaluate MARTINI on 14 types of backdoor attacks
in image classification tasks. Our method can reduce
the attack success rate (ASR) from 96.56% to 5.17% on
average, surpassing 12 state-of-the-art backdoor removal
techniques, which at best reduce the ASR to 26.56%. We
also conduct experiments on two additional computer vi-
sion tasks: self-supervised learning and object detection.
For self-supervised learning, MARTINI successfully re-
duces the ASR from 97.17% to 8.99%, whereas the best
baseline only reduces it to 29.44%. For object detection,
MARTINI reduces the ASR from 97.06% to 5.79%, signif-
icantly lower than the baselines, which achieve 34.56%
at best. We further apply MARTINI to natural language
processing models and demonstrate its generalizability in
mitigating backdoors in other domains. Additionally, our
adaptive attacks against MARTINI validate its robustness
against knowledgeable adversaries.

2. Threat Model
Attack Goal and Capabilities. The attacker aims to inject
backdoors into deep learning models so that any input with
the attacker-chosen trigger will be misclassified to a target
output. The attacker can utilize a variety of backdoors that
either use a patch-like pattern, such as BadNets [18] and
Dynamic attack [47], or apply semantically relevant per-

turbations that cover almost the entire input area, such as
DFST [7], WaNet [41], and Filter attack [35]. The back-
door can flip any sample from any class to a target class,
known as a universal backdoor [6, 18, 36], or flip samples
from a particular victim class to a target class, known as a
label-specific backdoor [35, 47, 61]. The attacker can inject
backdoors into models either by poisoning the training data
or by directly constructing a trojaned model to be published
on online platforms (e.g., Huggingface).
Defense Goal and Capabilities. Given a pre-trained
model, the goal of the defense is to mitigate potential back-
doors in the model without knowing the backdoor types.
The defense process should not affect the model’s normal
functionality, e.g., without sacrificing much accuracy. The
defender has access to a subset of the clean training dataset
(5%) [27, 54]. The defender has full control over modify-
ing the model, such as updating model weight parameters,
removing neurons, etc. The updated model by the defender
is not accessible to attackers.

3. Motivation
Recent backdoor attacks adopt triggers that are more inter-
connected with the main task of learning models. Figure 1
shows a few example attacks. The first row presents clean
inputs, and the second row shows these inputs modified by
backdoor triggers. The differences between the images in
the first two rows are given in the third row, illustrating how
these backdoor attacks perturb inputs. Observe that all the
pixels in the input are altered. Specifically, the DFST at-
tack [7] (1st column) applies a sunrise color style to the
mountain image, disguising it as a natural scene. The Blend
attack [6] (2nd column) adds salt-and-pepper-like noise to
the image, making it appear as a dog with colorful fur.
The third case (SIG [2]) looks like a picture taken behind a
fence. The changes introduced by WaNet [41] (4th column)
are almost invisible as it only deforms an image through
distortion transformations, such as twisting the outlines of
objects. The last one attacked by Filter [35] (5th column)
resembles an antique picture taken in the last century.

All these backdoor attacks perturb inputs in a way that
makes the trigger-inserted samples very similar to natural
inputs. The additive features introduced by the triggers are
relevant to the main content, making them not easily sepa-
rable from the original learning task. The unique nature of
these attacks makes mitigating backdoors extremely chal-
lenging and renders most existing solutions less effective.

3.1. Limitations of Existing Techniques
Relying on Neuron Isolation. As backdoor attacks have
a different goal from the original learning task, certain
parts of backdoored models might be used specifically for
achieving the attack goal, i.e., causing the target misclas-
sification when the trigger is presented. Based on this as-



sumption, several existing defense techniques aim to iden-
tify and remove the neurons compromised by backdoor at-
tacks [30, 32]. For example, ANP [65] first identifies com-
promised neurons whose weight values are exceptionally
sensitive and then prunes these neurons. RNP [30] removes
neurons that cause a large loss increase when reversing the
original training objective, i.e., enlarging (instead of de-
creasing) the classification loss on clean data.

However, backdoor attacks may not activate a particu-
lar set of neurons. For instance, the DFST attack was de-
signed specifically to reduce the identification of possible
compromised neurons. During the attack, it applies a tech-
nique [35] to locate compromised neurons and then miti-
gates their presence, a process called detoxification. This
process can significantly degrade the defense performance
of existing techniques relying on neuron isolation. For ex-
ample, after three rounds of detoxification, ANP can only
reduce the attack success rate of DFST to 90.11%, with
more than a 7% clean accuracy drop, which nearly fails to
mitigate backdoors. This type of backdoor defense, which
relies on neuron isolation, is less effective when backdoor-
related neurons are interleaved with those for the original
tasks, especially against attacks like those in Figure 1.
Assuming Feature Separation. Backdoor behavior may
not be distinctive from clean-task behavior at the neuron
level, as discussed earlier. It could be distributed across
all layers and neurons in deep learning models. However,
backdoor features could still be quite different from those
of clean data. Another line of defenses assumes that by fo-
cusing on the original clean task, the model can “forget” the
backdoor behavior [39, 68, 72]. For example, FT-SAM [71]
utilizes an optimization method called sharpness-aware
minimization for fine-tuning the backdoored model on clean
data, aiming to instruct the model to focus on the clean task.
NAD [27] applies knowledge distillation techniques to ex-
tract a clean student model from the backdoored teacher
model. The distillation process is also guided by the clean
data to ensure the main task performance.

The assumption of feature separation however is not a
necessary condition for backdoor attacks. A recent attack,
COMBAT [20], only uses low-frequency components as the
trigger, which are the channels where normal clean features
lie. Defense methods assuming feature separation of back-
door attacks are less effective against such an attack. For
instance, FT-SAM and NAD can only reduce the attack suc-
cess rate of COMBAT to 67.33% and 42.65%, respectively.
Less Powerful Trigger Modeling. Trigger inversion is an
approach that reverse-engineers the injected trigger from
backdoor attacks [55, 63]. This approach requires modeling
the trigger function to find a set of parameters resembling
the injected backdoor. For example, NC [61] uses two
input-size matrices to denote which pixel and how much
of the pixel value should be changed. The inverted trigger
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Figure 2. Overview of MARTINI.

can then be used to unlearn the backdoor effect by adding
it to clean inputs and training them with the correct labels.
ABS [35] leverages a simple convolutional kernel to model
possible changes by attacks, such as those in Figure 1.

These existing inversion techniques cover only a very
limited number of possible attacks. NC-like methods are
mainly designed for patch-type backdoors and are not capa-
ble of modeling style-based attacks such as DFST [7]. The
formulation of ABS is also not general enough for modeling
various attacks. For example, when using ABS to reverse-
engineer the trigger from the SIG attack [2], the inverted
trigger achieves only a 39% attack success rate, compared
to the injected trigger’s 93%, indicating the inverted trigger
does not resemble the injected one. Therefore, using this
trigger in unlearning cannot mitigate the backdoor. In fact,
the attack success rate remains 85.29% after applying ABS
to purify the backdoored model.

4. Methodology
4.1. Defense Overview
The workflow of our mitigation method, MARTINI, is pre-
sented in Figure 2. It consists of three steps: (1) decoder
construction, (2) trigger reverse-engineering, and (3) back-
door mitigation. In the first step, the features extracted from
a pre-trained encoder are fed to a decoder. The decoded im-
age is compared to its original counterpart. The difference
between these two is utilized as loss (for minimization) to
update the decoder’s weights. Only clean images (from the
encoder’s dataset, i.e., ImageNet) are used during decoder
training. Once the training converges, the decoder is able to
faithfully project abstract features to the input space.

In the second step, MARTINI aims to transform a set of
benign inputs into backdoor samples that can induce tar-
geted misclassification. Specifically, given a set of clean
inputs (from the victim model’s dataset), it first normalizes
the input values using a normalization layer such that dif-
ferent input samples have the same value distribution (i.e.,
mean and standard deviation). The feature representations
from these normalized inputs are modified by our proposed
transformation layer (blue rectangle in the middle), serv-
ing as the backdoor function. That is, the transformation
layer can inject backdoor features into the original fea-
ture representations. Once decoded by the decoder, they
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Figure 3. Procedure of generating backdoor samples from clean
inputs.

can induce misclassifications on the victim model to the tar-
get label, having the same injected backdoor effect.

In the last step, the generated backdoor samples by
MARTINI together with clean inputs are then used for train-
ing the victim model. It is an iterative procedure for steps
2 and 3. That is, for each training iteration, a few clean
samples are chosen to generate backdoor samples with re-
spect to the current state of the model as discussed in step 2.
MARTINI searches for different parameters of the trans-
formation layer maximizing the attack ability that de-
notes various injected backdoors. The generated samples
paired with the correct labels are then used to update the
victim model’s weights to remove those backdoors. The
training terminates when the model converges.

4.2. Trigger Reverse-engineering and Backdoor
Generation

The goal of having a generic trigger function is to cre-
ate a universal way of modeling various backdoor attacks.
Our intuition is that in backdoor attacks, especially for se-
mantic backdoors shown in Figure 1, the perturbation for
a particular pixel xi,j , denoted as pi,j , is dependent on
the original pixel values in its neighboring area. That is,
pi,j = g(xi−ϵ,j−ϵ, . . . , xi+ϵ,j+ϵ). However, the function g
and the bound ϵ vary significantly from attack to attack, and
even by different locations i and j1. These perturbations in-
duce feature space variations that can be approximated by
a transformation layer (e.g., a convolutional layer). Differ-
ent attacks are essentially different sets of parameters of the
transformation layer. Our case study later in this section
and empirical results in Section 5.1 support this argument.
In the following, we first elaborate on the overview of back-
door generation and then discuss each component in detail.

Figure 3 illustrates the procedure of our backdoor
generation. It is carried out on a set of inputs. Here, we
use one single input for discussion simplicity. Given an
input x ∈ RC×W×H (C,W,H denote channel, width, and
height, respectively), we first apply a normalization layer
Γ to obtain a normalized input x′. Input x′ is then fed to a
pre-trained encoder f (not the victim model) for obtaining
the feature representation a′. Our backdoor transformation
layer Ψ adversarially modifies the representation a′ and
produces an altered representation a′′. The decoder f−1

1Patch-type backdoors are typically dependent primarily on locations,
not on neighboring pixel values.

takes in a′′ and generates a backdoor sample x̂. We use
the SSIM score [62] as the loss function to constrain the
difference between the backdoor sample x̂ and the original
input x. The backdoor sample x̂ is also fed to the encoder
f to obtain its feature representation â, which is used to
compare with the original representation a from the input
x. We use the mean squared error as the content loss to
bound the difference between a and â. To achieve the back-
door effect that can induce misclassification, the decoded
backdoor sample x̂ is passed to the victim model M to
obtain the prediction ŷ. The cross entropy loss is utilized to
make sure the prediction ŷ is the same as the target label yt.
The normalization layer Γ and the transformation layer
Ψ are optimized during the backdoor generation. They
serve as the trigger function to transform benign inputs to
backdoor samples. We elaborate the details of Γ and Ψ as
well as the loss terms in the following.
Normalization Layer. Different input samples may have
distinct value distributions on each channel (i.e., R, G, B
channels). For instance, an input x0 may have all small val-
ues (e.g., 10) on the R channel, but another input x1 has
all large values (e.g., 200). A slightly larger transformation
on x0 is reasonable but can cause the change on x1 out of
the valid range (i.e., 255). It is hard for the optimization to
find a valid solution for x1 as it can be quickly out of the
range. To facility an easier optimization process, a normal-
ization layer Γ is introduced in our backdoor generation. It
is applied on the inputs to reduce the covariate shift on each
channel. In other words, different inputs will have the same
mean and standard deviation of pixel values for a particu-
lar channel (e.g., the R channel). Each channel has its own
statistics. The normalization layer Γ is defined as follows.

x′ = Γ(x) = (x− µx)/σx · σb + µb, (1)

where µx and σx are the mean and standard deviation of
input x along the width and height dimensions. That is,
we have one mean value and one standard deviation value
for each channel (e.g., µx ∈ RC). Parameters µb and σb

are the normalization scaling variables in the same shape of
µx and σx. Note that variables µb and σb are the same for
all the samples and will be optimized during our backdoor
generation.
Transformation Layer. A backdoor sample derived from
a clean input has a different internal feature representation
as that of its clean counterpart. Since the exact injected
backdoor a model has is unknown beforehand, we propose a
transformation layer Ψ to mutate the feature representation
of the clean input, aiming to produce a feature representa-
tion that could cause misclassification like some backdoor
sample. The transformation layer shall be general, allow-
ing us to model a large spectrum of possible backdoors. As
backdoors can alter all the pixels in the input, the changes
can be diverse for different input regions.

Figure 4 presents an example. The first column shows
two clean input images. The second column shows the in-



jected backdoor samples that are transformed from clean
inputs using a Toaster filter. Observe that the injected back-
door samples have dark orange color in the middle and
lighter color for the surrounding areas. A straightforward
design of the transformation layer is to use a traditional
convolutional layer to transform the clean feature represen-
tation. The convolution operation denotes a uniform trans-
formation, where all the values on a feature map is com-
puted by a same kernel. However, this is undesirable for
expressing the backdoor discussed above. The third column
in Figure 4 denotes the generated samples by using a tradi-
tional convolutional layer. Observe that the color changes
are uniform for different regions, failing to produce the or-
ange color region in the middle. We hence propose to di-
vide a feature map into a set of regions and apply different
convolutional kernels on different regions. We call it re-
gional transformation. While the details are discussed later
in this section, the last column in Figure 4 presents the re-
sults of using regional transformation for generating back-
door samples. Observe that comparing to the images in the
third column, the regional transformation is able to produce
the orange color in the middle and lighter color in the sur-
rounding areas. Note that the Toaster filter is only one of
the cases where backdoors manipulate different regions of
the input using different transformations. MARTINI is not
restricted to the particular style of Toaster filter. As shown
in the bottom of Figure 1, our method can faithfully model
a wide range of backdoor attacks with high ASR (shown in
the last row).

We formally define the regional transformation in the
following. Assume the input feature representation a′ ∈
RC′×W ′×H′

(features before transformation), and a set
of convolutional kernels (i.e., weight parameters) U ∈
Rz×z×C′×C′×m×m, where z × z is the number of convo-
lutional kernels (one for each region in our design), and
m is the kernel size (i.e., the number of weight parame-
ters in a kernel). We hence can divide a′ into a set of re-
gions evenly with the size of W ′

z × H′

z , denoted as w × h.
The feature representation a′ can hence be reshaped to
a′ ∈ Rz×z×C′×w×h. The transformed feature representa-
tion a′′ is obtained as follows.

a′′ = Ψ(a′) =


r0,0 r0,1 ... r0,z−1

r1,0 r1,1 ... r1,z−1

... ... ... ...
rz−1,0 rz−1,1 ... rz−1,z−1

 , (2)

ri,j = U [i, j]⊗ a′[i, j], (3)

where ri,j denotes the transformed region (i, j) and ⊗ de-
notes the convolutional operation. Observe that each region
a′[i, j] is transformed by a convolutional kernel U [i, j].
These regions will be placed in their original positions after
the transformation. Note that the transformed feature rep-
resentation a′′ has the same number of channels as a′ such
that it can be properly decoded by the decoder to the input

Input Injected Generated Gen. w/ Region
Figure 4. Example of regional transformation.

space. The variable z for the number of regions is deter-
mined based on the size of the feature representation. In our
current implementation, z = ⌈max(W ′, H ′)/32⌉ + 2. For
example, assume an input whose feature representation size
is 32× 32, variable z = ⌈32/32⌉+2 = 3. We hence divide
the feature representation into 3 × 3 regions. We also con-
duct a formal analysis in Appendix A to demonstrate that
our regional transformation can express various backdoor
behaviors.
Loss Terms. Figure 3 shows three loss terms. The SSIM
score and the content loss are introduced to constrain the
transformations on the inputs. In other words, it is desired
to have generated backdoor samples retaining most main
features and similar to the original inputs as backdoors typ-
ically preserve main contents (see Figure 1).

LSSIM = SSIM(x, x̂), (4)

Lcontent = MSE(a, â) =
1

N

N−1∑
i=0

(ai − âi)
2. (5)

The cross entropy loss LCE(yt, ŷ) is to induce the desired
misclassification to the target label yt.

Other than the above three loss functions, we also use
another two loss terms to improve the quality of generated
backdoor samples as follows.

Lnorm =
1

C

C∑
|µb − µ̄X |+ 1

C

C∑
|σb − σ̄X |, (6)

Lsmooth = MSE
(
x̂, AvgPool(x̂)

)
(7)

Loss term Lnorm is to reduce the difference between the
backdoor statistics (i.e., mean and standard deviation) and
the average statistics across all the samples X (in the gener-
ation set) on each channel. This avoids the generated back-
door samples become too far away from the distribution of
input samples. Loss term Lsmooth smooths the local area of
pixel changes, preventing abrupt pixel changes on the back-
door samples. Function AvgPool is an average pooling op-
eration, where each pixel value is replaced by the average
of its neighboring pixels (e.g., in a 3× 3 region).

Our final loss function for generating backdoors is the
following.

L = LCE +α(λ0Lcontent +λ1LSSIM +λ2Lsmooth +Lnorm)
(8)



We dynamically adjust the weight parameter α to balance
the misclassification goal and the backdoor quality. We em-
pirically set λ0 = 0.001, λ1 = 100, and λ2 = 0.05 such
that all the loss terms are at the same scale. The impact of
these hyperparameters is studied in Appendix G.

5. Evaluation
We primarily evaluate MARTINI on two computer vision
tasks: image classification and self-supervised learning. Its
defense performance is compared against 12 state-of-the-art
backdoor mitigation techniques. To further validate our ap-
proach, we perform an adaptive attack and conduct an abla-
tion study to analyze the effects of different design choices.
Finally, we explore the potential of extending MARTINI to
other applications, e.g., object detection and NLP sentiment
analysis, where it demonstrates promising performance.

5.1. Mitigating Backdoors in Image Classification
Experiment Setup. We leverage a set of standard datasets
and well-known model architectures. Five image classifi-
cation datasets are employed in the experiments: CIFAR-
10, STL-10, SVHN, GTSRB, and CelebA. Various model
architectures such as ResNet, Network in Network (NiN),
and VGG are used. We evaluate on 14 types of back-
door attacks including [2, 6, 7, 14, 18, 20, 29, 35, 41, 42,
45, 47, 59, 69]. We consider 12 backdoor removal tech-
niques [27, 27, 30, 32, 35, 39, 54, 65, 68, 70–72]. More
details are provided in Appendix B. For evaluating the de-
fense performance, the normal functionalities are measured
using the predication accuracy on the test set (Acc.). We
use the attack success rate (ASR) of backdoor attacks as the
metric, which is the percentage of backdoor samples classi-
fied to the attack target label. We follow the same setup as
in existing works [27, 54] by using only 5% of the original
training set for mitigating backdoor effects.

Comparison with Seven Well-known Defenses. Seven
well-known backdoor mitigation approaches are used as
baselines to compare with MARTINI. The defense results on
the 14 backdoor attacks are presented in Table 1 and Ap-
pendix C. DFST [7] introduces a detoxification procedure
by iteratively training on reverse-engineered backdoors to
reduce the number of compromised neurons that can be
leveraged by existing defenses. We follow the original pa-
per and evaluate two settings with one round (D1) and three
rounds (D3) of detoxification2.

The top three rows of Table 1 report the results on patch-
type backdoors, where the trigger is a few pixel changes on
the input, such as a square patch pattern. Almost all the
defense techniques can reduce the ASR to less than 5%.
MARTINI is able to reduce the ASR to less than 2% for all
three attacks. These results are expected. As discussed in

2The original paper [7] used at most three rounds of detoxification.

the motivation section, these static triggers can be easily
learned by deep learning models, causing their learned fea-
tures to be quite different from those of the main task. All
the defenses can leverage this characteristic to easily isolate
the backdoor behavior and eventually remove it.

DFST leverages a GAN to generate backdoor samples
that are semantically similar to benign inputs. On CIFAR-
10, FT, FP, MCR, NAD, ABS, and MOTH can only reduce
the ASR of DFST on ResNet32-D1 from 97.60% to more
than 60%. ANP is able to reduce the ASR to 20.67%,
but at the cost of a significant accuracy degradation from
89.95% to 83.34%. MARTINI, on the other hand, can reduce
the ASR to 14.22% with only a 1.73% accuracy degrada-
tion. NAD, ABS, and MOTH perform better on VGG13-D1,
reducing the ASR from 95.89% to 24.56%, 33.78%, and
5.33%, respectively. However, with an increase in detoxifi-
cation rounds, they can only reduce the ASR to more than
50%. MARTINI can consistently mitigate DFST backdoors,
achieving less than 15% ASR on ResNet32 and less than
6% on VGG13.

The Blend attack uses random small perturbation pat-
terns as the backdoor, which can be easily eliminated by
all the evaluated techniques, except for FT on CIFAR-10.
MARTINI can reduce the ASRs to less than 1% for the two
studied cases. However, when Blend is enhanced with an
advanced attack strategy, A-Blend, which reduces the sep-
aration of clean and backdoored data distributions, existing
defenses become less effective. Specifically, most of the
baselines can only reduce the ASR to 40%. MOTH per-
forms slightly better with a 25% ASR, as it does not rely on
the separability of backdoor features. MARTINI can signifi-
cantly reduce the ASR to 12.64%, surpassing all baselines.

The defense results on SIG, LIRA, WaNet, Invisible, and
CL attacks are better for baselines, as existing techniques
can reduce the ASRs to a reasonable range (less than 20%
in most cases). MARTINI further reduces the ASRs to less
than 5% for 7 out of 9 cases and less than 9% for the re-
maining cases (LIRA on CIFAR-10 and WaNet on CelebA),
outperforming the well-known defenses.

Narcissus and COMBAT are recent backdoor attacks
specifically designed to use features that closely resemble
benign features. This design breaks the assumptions on
which existing defenses are based, as discussed in the mo-
tivation section. As we can observe from the results in Ta-
ble 1, almost all the baseline techniques cannot reduce the
ASR to lower than 40%, except for ABS on Narcissus. In
comparison, MARTINI can reduce the ASR of Narcissus to
1.45%, substantially lower than that achieved by the base-
lines. The ASR of COMBAT is also reduced to 22.59%,
which is half that of existing techniques.

The results on filter attack are presented in Appendix C.
MARTINI can eliminate all the backdoors with an average
ASR down to 0.55%, outperforming the others. All the ap-



Table 1. Mitigating backdoors in image classifiers. The best results highlighted with blue color.

Attack Dataset Model
Original FT FP MCR NAD ANP ABS MOTH MARTINI

Acc. ASR Acc. ASR Acc. ASR Acc. ASR Acc. ASR Acc. ASR Acc. ASR Acc. ASR Acc. ASR

BadNets CIFAR ResNet18 93.50% 100.0% 90.88% 1.26% 91.58% 1.16% 91.51% 1.10% 92.57% 0.87% 90.72% 4.07% 92.28% 0.40% 89.47% 1.11% 88.49% 1.97%

Dynamic CIFAR ResNet18 93.52% 99.97% 91.83% 1.51% 92.28% 0.43% 92.12% 0.96% 92.77% 1.63% 88.53% 16.80% 92.59% 1.42% 89.05% 1.51% 91.47% 1.42%

IA CIFAR ResNet18 90.45% 99.16% 87.71% 2.26% 88.68% 2.50% 89.09% 1.17% 86.22% 3.21% 89.02% 2.46% 89.63% 0.84% 85.80% 16.77% 90.35% 0.84%

DFST

CIFAR

RNet32-D1 89.95% 97.60% 87.30% 70.00% 88.20% 62.89% 87.95% 62.67% 88.00% 60.44% 83.34% 20.67% 86.97% 84.11% 88.90% 65.44% 88.22% 14.22%
RNet32-D3 90.93% 95.33% 89.20% 63.89% 88.09% 47.44% 82.84% 60.78% 85.78% 17.33% 83.68% 90.11% 90.74% 37.78% 89.53% 54.44% 88.11% 12.22%
VGG13-D1 90.34% 95.89% 86.07% 93.56% 87.37% 51.11% 86.58% 90.33% 87.24% 24.56% 86.92% 89.56% 88.71% 33.78% 87.26% 5.33% 88.03% 2.00%
VGG13-D3 91.29% 97.44% 89.55% 66.11% 88.84% 85.67% 88.81% 86.78% 87.09% 55.33% 88.46% 96.11% 88.67% 66.67% 89.91% 51.22% 89.08% 5.67%

STL

RNet32-D1 75.74% 97.67% 70.64% 70.64% 68.89% 96.11% 68.05% 84.67% 70.92% 44.00% 65.71% 90.11% 72.26% 68.56% 71.97% 60.89% 72.10% 2.67%
RNet32-D3 76.45% 99.00% 71.30% 93.22% 69.25% 88.22% 69.98% 81.89% 72.21% 89.11% 71.89% 69.56% 71.95% 97.78% 72.09% 71.56% 72.86% 4.78%
VGG13-D1 72.18% 98.67% 70.11% 84.78% 67.12% 67.00% 66.06% 66.22% 68.91% 86.67% 68.88% 98.11% 68.46% 48.44% 69.86% 62.67% 68.61% 5.89%
VGG13-D3 72.09% 98.89% 70.42% 97.33% 68.14% 49.44% 66.66% 79.67% 68.91% 81.00% 65.70% 97.33% 67.29% 37.56% 67.54% 86.56% 69.89% 12.33%

Blend CIFAR ResNet20 90.96% 99.96% 90.33% 84.92% 87.75% 3.63% 85.53% 63.58% 86.81% 3.94% 85.20% 6.22% 89.41% 5.66% 85.44% 12.26% 89.08% 0.00%
SVHN NiN 94.10% 92.37% 92.70% 0.54% 88.26% 23.75% 93.50% 0.59% 94.40% 0.33% 92.67% 0.41% 91.76% 10.66% 94.41% 0.20% 94.56% 0.85%

A-Blend CIFAR ResNet18 94.56% 85.62% 93.01% 58.06% 88.65% 42.84% 93.62% 72.50% 90.42% 49.50% 90.80% 69.51% 88.94% 30.96% 91.97% 24.96% 90.20% 12.64%

SIG CIFAR ResNet20 83.38% 93.30% 88.65% 59.40% 81.01% 76.29% 83.31% 16.63% 85.84% 9.44% 80.02% 37.44% 86.82% 85.29% 80.39% 17.72% 86.91% 3.97%
SVHN NiN 95.48% 92.46% 95.11% 41.60% 93.35% 23.49% 93.19% 45.16% 94.21% 0.68% 90.10% 20.91% 93.47% 55.02% 94.90% 0.69% 93.96% 0.46%

LIRA CIFAR ResNet18 93.25% 99.92% 91.19% 23.60% 90.60% 77.53% 92.24% 27.22% 90.61% 11.55% 88.58% 48.17% 91.12% 7.01% 90.06% 37.90% 91.78% 6.59%

WaNet
CIFAR ResNet18 94.15% 99.55% 93.58% 80.71% 89.14% 2.09% 93.29% 1.74% 91.37% 0.87% 91.38% 0.11% 89.61% 1.88% 92.65% 0.62% 91.12% 0.64%
GTSRB ResNet18 99.01% 98.94% 96.80% 48.75% 96.06% 63.40% 98.54% 10.47% 94.96% 0.02% 97.38% 0.00% 98.51% 0.00% 97.72% 0.01% 97.70% 0.30%
CelebA ResNet18 78.99% 99.08% 78.89% 21.35% 76.57% 18.07% 78.32% 16.21% 76.57% 15.34% 76.79% 14.22% 75.56% 21.69% 77.80% 8.91% 77.57% 8.12%

Invisible CIFAR ResNet18 94.43% 99.99% 91.63% 1.72% 91.74% 1.68% 92.33% 1.36% 90.66% 2.44% 93.27% 1.83% 91.64% 3.81% 89.68% 3.02% 90.25% 1.14%
VGG11 91.05% 99.76% 88.15% 2.00% 90.40% 0.38% 88.68% 1.58% 88.26% 3.47% 88.76% 1.54% 88.81% 2.52% 89.34% 3.68% 89.16% 2.33%

CL CIFAR ResNet18 87.60% 98.36% 85.74% 97.34% 83.66% 26.77% 85.23% 13.91% 84.44% 7.47% 86.18% 4.46% 85.33% 7.18% 83.70% 8.34% 85.67% 4.22%

Narcissus CIFAR ResNet18 92.38% 94.76% 90.74% 52.83% 90.18% 69.99% 92.09% 76.25% 88.29% 52.05% 89.79% 92.06% 88.52% 34.20% 90.49% 50.31% 90.51% 1.45%

COMBAT CIFAR ResNet18 94.00% 80.19% 85.26% 46.41% 88.82% 58.31% 87.87% 69.70% 85.91% 42.65% 88.16% 65.41% 86.27% 46.13% 89.68% 58.21% 89.83% 22.59%

Average 88.79% 96.56% 86.67% 50.55% 85.39% 41.61% 85.90% 41.33% 85.73% 26.56% 84.88% 41.49% 86.21% 31.57% 85.98% 28.17% 86.62% 5.17%

proaches incur a very small accuracy degradation on aver-
age (< 0.3%).

Comparison with Five Recent Defenses. Five recent state-
of-the-art backdoor mitigation methods are also utilized as
baselines to compare with MARTINI. Table 2 reports the re-
sults. As these defense techniques have reported to be ef-
fective against several existing backdoor attacks, we hence
focus on more recent advanced attacks: A-Blend, Narcis-
sus, and COMBAT. These attacks proactively reduce the
difference between backdoor features and benign features.
According to Table 2, most of these defenses are effective
against A-Blend, except for RNP. This is because RNP re-
lies on backdoor-related neurons being more sensitive than
benign neurons, similar to the assumption that ANP is based
on. A-Blend is optimized to avoid such a characteristic,
causing RNP to fail. For Narcissus and COMBAT, all the
baseline defenses fall short, with ASRs remaining above
60% in almost all cases. FT-SAM and FST have slightly
better results on Narcissus but are still less effective against
COMBAT. Unlike A-Blend, which still uses an existing
trigger pattern, Narcissus and COMBAT optimize the trig-
ger such that not only are the model internals indistinguish-
able between backdoor and clean behavior, but the trigger

pattern itself closely resembles benign features. Neverthe-
less, MARTINI is still very effective against these attacks,
achieving better defense performance compared to the most
recent state-of-the-art defense techniques.

5.2. Mitigating Backdoors in Self-supervised
Learning

Experiment Setup. We leverage two backdoor attacks in
self-supervised learning: BadEncoder [22] and DRUPE [56]
with a 10x10 patch trigger. CIFAR-10 and STL-10 are
considered as the encoder pre-training datasets, GTSRB,
SVHN, CIFAR-10 and STL-10 are used as the downstream
fine-tuning datasets. Four baselines are adapted from image
classification tasks: FT, NAD, ANP, and MOTH.

Evaluation Results. Table 3 reports the results. For
BadEncoder, when CIFAR-10 is used as the pre-training
dataset, most baseline techniques fail to remove the back-
door effects on the downstream tasks, with ASRs still over
80% in most cases. ANP performs better than other base-
lines, reducing the ASRs to around 30%. MARTINI achieves
the best performance, reducing the ASR to as low as 5%.
The observations on STL-10 are similar. For DRUPE, base-
line defenses perform particularly poorly in certain cases.



Table 2. Comparison with recent defenses. The best results highlighted with blue color.

Attack
Original I-BAU SEAM FT-SAM FST RNP MARTINI

Acc. ASR Acc. ASR Acc. ASR Acc. ASR Acc. ASR Acc. ASR Acc. ASR

A-Blend 94.56% 85.62% 90.89% 25.01% 90.70% 14.60% 88.93% 20.76% 90.74% 10.60% 88.01% 52.69% 90.20% 12.67%
Narcissus 92.38% 94.76% 90.37% 61.21% 88.80% 69.07% 87.82% 30.02% 86.86% 41.49% 88.62% 72.01% 90.51% 1.54%
COMBAT 94.00% 80.19% 90.22% 63.28% 89.79% 72.00% 89.75% 67.33% 91.66% 73.79% 89.20% 75.94% 89.83% 22.59%

Average 93.65% 86.86% 90.49% 49.83% 89.76% 51.89% 88.83% 39.37% 89.75% 41.96% 88.61% 66.88% 90.18% 12.27%

Table 3. Mitigating backdoors in self-supervised learning. The best results highlighted with blue.

Attack Pre-training
Dataset

Downstream
Task

Original FT NAD ANP MOTH MARTINI

Acc. ASR Acc. ASR Acc. ASR Acc. ASR Acc. ASR Acc. ASR

BadEncoder

CIFAR-10
GTSRB 82.43% 99.37% 77.13% 92.35% 77.75% 91.52% 83.31% 28.30% 75.97% 52.28% 82.58% 5.10%
STL-10 76.26% 99.79% 74.85% 97.59% 74.67% 92.88% 73.20% 32.90% 72.60% 88.99% 72.53% 13.84%
SVHN 68.90% 99.23% 56.72% 95.99% 56.88% 96.73% 68.79% 43.48% 67.63% 93.04% 71.01% 17.92%

STL-10
GTSRB 74.25% 98.46% 61.05% 45.45% 64.38% 3.88% 70.48% 4.51% 68.88% 46.39% 73.52% 3.90%
CIFAR-10 83.72% 98.15% 81.97% 39.81% 82.44% 83.48% 80.50% 14.38% 75.48% 12.01% 81.17% 8.88%
SVHN 74.36% 96.28% 66.06% 21.15% 65.81% 25.58% 66.38% 23.25% 69.16% 27.28% 71.72% 14.95%

DRUPE

CIFAR-10
GTSRB 78.35% 94.75% 56.29% 73.82% 70.82% 25.88% 76.08% 4.29% 68.35% 23.86% 79.55% 2.29%
STL-10 73.92% 95.85% 70.90% 68.40% 70.92% 61.40% 69.16% 57.67% 66.80% 35.17% 70.00% 17.69%
SVHN 79.40% 95.59% 67.60% 3.97% 67.64% 79.54% 79.25% 89.03% 74.01% 4.49% 74.20% 0.68%

STL-10
GTSRB 76.71% 95.76% 69.71% 12.15% 68.91% 32.76% 76.67% 6.02% 70.40% 6.80% 77.85% 4.85%
CIFAR-10 84.14% 95.31% 84.51% 14.19% 84.87% 22.24% 81.63% 19.00% 82.19% 16.89% 83.71% 6.98%
SVHN 75.06% 97.52% 68.39% 80.70% 68.09% 80.11% 71.78% 30.43% 69.25% 15.11% 72.86% 10.84%

Average 77.29% 97.17% 69.60% 53.80% 71.10% 58.00% 74.77% 29.44% 71.73% 35.19% 75.89% 8.99%

For example, when the pre-training dataset is STL-10 and
the downstream is SVHN, both FT and NAD have ASRs
over 80%. ANP has nearly 90% ASR on the CIFAR-10 en-
coder with SVHN as the downstream. Overall, MARTINI
successfully mitigates backdoors in self-supervised learn-
ing, reducing the ASR from 97.17% to 8.99% with only a
1.4% accuracy drop.

5.3. Additional Evaluations
Adaptive Attacks. We conduct an adaptive attack by op-
timizing a trigger pattern during poisoning while applying
our mitigation method (the adaptive knowledge). Our re-
paired models have less than 15% ASR, demonstrating the
robustness of our technique (see Appendix D).
Defense Efficiency. We use an off-the-shelf encoder and
only train the decoder, which takes 32.76 minutes. This
is a one-time effort, and the trained decoder can be used
to generate backdoors on different datasets. Our runtime
efficiency is comparable to baselines (see Appendix E).
Extension to Other Applications We extend MARTINI to
Object Detection and NLP sentiment analysis models. The
results show that MARTINI can successfully eliminate back-
doors, surpassing the baseline (see Appendix F).
Ablation Study. We study design choices of MARTINI in-
dividually to better understand their contributions. The four
losses are all important. We also study the impact of four
hyperparameters used in Equation 2 and Equation 8, and the
impacts are small. See details in Appendix G.

6. Related Work

Early backdoor attacks typically used static trigger pat-
terns, such as colorful patches at the corner [6, 18]. More
recently, research has shifted toward semantic backdoors.
Some works design natural and complex triggers [2, 6, 7,
14, 29, 41, 59, 69], while others propose more robust train-
ing to resist defenses [10, 20, 45]. It has also been shown
that normally trained models can exhibit inherent back-
doors without poisoning [57]. Defense strategies against
backdoor attacks fall into three categories: (1) backdoor
input detection, which identifies inputs stamped with trig-
gers [16, 58, 66]; (2) backdoor scanning, which determines
whether a model contains a backdoor, often by reconstruct-
ing the trigger pattern [1, 8, 15, 23, 48–50, 53]; and (3)
backdoor mitigation, which removes injected backdoors
from poisoned models [9, 27, 32, 32, 67]. In this paper, we
focus on backdoor mitigation, aiming to remove backdoor
effects before deploying models in real-world applications.

7. Conclusion

We propose MARTINI, a novel backdoor mitigation tech-
nique, that can eliminate a variety of backdoor attacks. It
features a general backdoor generation method that models
a spectrum of backdoors. The evaluation on various datasets
and models demonstrates that MARTINI can reduce the ASR
of 14 backdoor attacks from 96.56% to 5.17%, outperform-
ing 12 existing state-of-the-art defense techniques.
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Appendix

A. Formal Analysis on the Transformation
Layer

As a region of the feature representation is transformed by
a convolutional kernel U , we study the property of such
an operation for expressing backdoor behaviors. Assume
a 2 × 2 input region X on the left of Figure 5 and a ker-
nel parameterized by W ∈ R2×2. Zero-padding is used
(demonstrated by the dotted cells). Output values can be
derived from the values in the region and the parameter val-
ues through the following equations.

a0 = w0 · x0 + w1 · x1 + w2 · x2 + w3 · x3

a1 = w0 · x1 + w2 · x3

a2 = w0 · x2 + w1 · x3

a3 = w0 · x3 (9)

Here, we leave the activation functions out for discussion
simplicity. Suppose a backdoor applies adversarial pertur-
bation δ on the region X . That is, x′

i = xi + δi, i ∈
{0, 1, 2, 3}. The feature representation for the backdoor
sample region A′ is hence the following.

a′0 = w0 · (x0 + δ0) + w1 · (x1 + δ1) + w2 · (x2 + δ2)

+ w3 · (x3 + δ3)

a′1 = w0 · (x1 + δ1) + w2 · (x3 + δ3)

a′2 = w0 · (x2 + δ2) + w1 · (x3 + δ3)

a′3 = w0 · (x3 + δ3) (10)

Our goal is to derive backdoor samples from benign in-
puts. That is, we apply the convolutional operation on the
benign feature representation to produce the backdoor rep-
resentation. Here, we use a convolutional kernel U ∈ R2×2

for analysis simplicity. Applying the kernel on the normal
representation A (see the middle part of Figure 5) produces
the following.

â0 = u0 · a0 + u1 · a1 + u2 · a2 + u3 · a3
= u0 · (w0x0 + w1x1 + w2x2 + w3x3)

+ u1 · (w0x1 + w2x3) + u2 · (w0x2 + w1x3)

+ u3 · w0x3

â1 = u0 · a1 + u2 · a3
= u0 · (w0x1 + w2x3) + u2 · w0x3

â2 = u0 · a2 + u1 · a3 = u0 · (w0x2 + w1x3) + u1 · w0x3

â3 = u0 · a3 = u0 · w0x3 (11)
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Figure 5. Example for transforming internal values.

Let A′ = Â and we have

δ0 = (u0 − 1) · x0 + u1 · x1 + u2 · x2 + u3 · x3

δ1 = (u0 − 1) · x1 + u2 · x3

δ2 = (u0 − 1) · x2 + u1 · x3

δ3 = (u0 − 1) · x3 (12)

As observed in Figure 4, semantic backdoors transform
inputs based on each original pixel value and do not
introduce abrupt value changes in the neighborhood of each
pixel (within the region)3. That is, each pixel perturbation
introduced by the backdoor transformation correlates
to the original value of its corresponding pixel and the
neighboring pixels. This can be expressed by our method as
show in Equation 12. For instance, the perturbation on the
first pixel δ0 is a portion (u0−1) of the corresponding pixel
x0 and also the linear combination of neighboring pixels
(u1x1 + u2x2 + u3x3). The scale of the perturbation is pa-
rameterized by our convolutional transformation U . It can
be properly modeled during our backdoor generation using
the gradient information from the victim model. Note that
although δ1-δ3 may not involve some neighboring pixels,
that is because we have only one layer. In practice, a model
has many layers, and x0-x3 are feature values from the
previous layer, which are functions involving neighboring
pixels. In addition, the above analysis only considers one
convolutional kernel in our transformation layer within the
region for discussion simplicity. In practice, for example,
the feature representation has 64 channels and each channel
is associated with one kernel, which gives us 64 different
combinations of neighboring pixels for each region.

B. Details of Experiment Setup
Datasets and Models.
• CIFAR-10 [24] is an object recognition dataset with 10

classification classes. It consists of 60,000 images and is
divided into a training set (48,000 images), a validation
set (2,000 images), and a test set (10,000 images).

• STL-10 [11] is an image recognition dataset with 10 clas-
sification classes. It consists of 5,000 training images and
8,000 test images.

• SVHN [40] is a dataset contains house digital numbers
extracted from Google Street View images. It has 73,257
training images and 26,032 test images. We divide the

3Static backdoors, such as BadNets, introduce strong features distinct
from benign features. Our formulation can capture the introduced fea-
tures, such as the color scheme. These features can be easily mitigated by
MARTINI, as shown by our experiments in Section 5.1.



original training set into 67,257 images for training and
6,000 images for validation.

• GTSRB [51] is a German traffic sign recognition dataset
with 43 classes. We split the dataset into a training set
(35,289 images), a validation set (3,920 images), and a
test set (12,630 images).

• CelebA [37] is a face attributes dataset. It contains 10,177
identities with 202,599 face images. Each image has an
annotation of 40 binary attributes. We follow [41] to se-
lect 3 out of 40 attributes, i.e., Heavy Makeup, Mouth
Slightly Open, and Smiling, and create an 8-class classi-
fication task.

• TrojAI [43] round 4 includes 16 types of model struc-
tures such as InceptionV3 [52], DenseNet121 [19],
SqueezeNet [21], etc. The task of these models is to
recognize synthetic street traffic signs with between 15
and 45 classes. Input images are constructed by com-
positing a foreground object, e.g., a synthetic traffic sign,
with a random background images from five different
dataset such as Cityscapes [12], KITTI [17], Swedish
Roads [25], etc. A set of random transformations are
applied during model training, such as blurring, light-
ing, shifting, titling, etc. Adversarial training such as
PGD [38] and FBF [64] is also utilized to improve model
quality. We randomly select 34 poisoned models by filter
attack from TrojAI round 4 [43].

Baseline Mitigation Methods.
• Fine-tuning (FT) [27] is a standard method originally

proposed for transfer learning. It updates a pre-trained
model’s weights with a small learning rate on the train-
ing set. We leverage the finetuning baseline setting
in NAD [27], which adopts data augmentation tech-
niques including random crop, horizontal flipping, and
cutout [13] during training.

• Fine-pruning (FP) [32] prunes neurons that have low ac-
tivation values for a set of clean samples. It then finetune
the pruned model on a small set of clean samples.

• MCR [70] linearly interpolates the weight parameters of
two models. It also includes a set of trainable parame-
ters during the interpolation. Specifically, the following
equation is used to build a new model ϕθ(t).

ϕθ(t) = (1−t)2ω1+2t(1−t)θ+t2ω2, 0 ≤ t ≤ 1, (13)

where t is the interpolation hyper-parameter ranging from
0 to 1. ω1 and ω2 are the weight parameters of two pre-
trained models, which are fixed. θ is a set of trainable
parameters that have the same shape of ω1 and ω2. For
eliminating backdoors in poisoned models, MCR uses the
poisoned model and its finetuned version as the two end-
points (ω1 and ω2) and trains θ on a small set of clean
samples. The best t is chosen for the interpolation based
on the clean accuracy.

• NAD [27] leverages the teacher-student structure to
eliminate backdoors. It first finetunes the poisoned model
on 5% of the training set. It uses this finetuned model
as the teacher network, and the poisoned model as the
student network. It then aims to reduce the internal
feature differences between the teacher network and the
student network by updating the student network. Finally,
NAD outputs the student network as the cleaned model.

• ANP [65] is based on the observation that backdoor
related neurons are more sensitive to adversarial pertur-
bations on their weights. It hence applies a mask on all
the neurons in the model, adversarially perturbs neuron
weights to increase the classification loss for a set of
clean samples, and minimizes the size of mask. ANP
then prunes neurons with small mask values, meaning
that they have been compromised by backdoor attacks.

• ABS [35] introduces a neuron stimulation analysis to
expose abnormal behaviors of neurons in a deep neural
network by increasing their activation values. Those neu-
rons are regarded as compromised neurons and leveraged
to reverse engineer backdoor triggers. ABS proposes
a one-layer transformation to approximate/invert filter
triggers. The inverted trigger is hence utilized to remove
the injected backdoor in poisoned models following the
unlearning procedure in NC [61].

• MOTH [54] enhances model robustness by increasing
the distance between classes. It employs trigger inversion
techniques to generate adversarial samples that bridge
class separations and utilizes asymmetric training to
harden the model. MOTH mitigates backdoor effects
by disrupting the shortcut connection between victim
classes and the target class.

• I-BAU [68] introduces a minimax formulation to mitigate
the backdoor effect. Specifically, this method leverages
the implicit hypergradient to address the interdepen-
dence between trigger synthesis and adversarial training
processes.

• SEAM [72] leverages the phenomenon of catastrophic
forgetting to unlearn the backdoor effect through label
shuffling. It then seeks to restore clean knowledge
by fine-tuning with the correct labels. This method
effectively disrupts the connection between the backdoor
trigger and its target label.

• FT-SAM [71] represents a novel backdoor defense
paradigm that integrates sharpness-aware minimization
with fine-tuning. This approach specifically targets neu-
rons associated with the backdoor, aiming to reduce their
influence by shrinking their norms, thereby mitigating
the backdoor effect.

• FST [39] proposes a simple yet effective technique for
purifying backdoors through finetuning. It specifically
promotes shifts in feature representation by actively
diverging the classifier weights from their initially



compromised states.
• RNP [30] exposes and eliminates backdoor neurons

through a process of unlearning followed by recovery.
Specifically, RNP begins by maximizing the model’s
error using a small subset of clean data. Afterward,
it recovers the affected neurons by minimizing the
model’s error on the same dataset. Neurons that remain
problematic after this process are considered backdoored
and are subsequently pruned.

Evaluated Backdoor Attacks.
• BadNets [18] is the pioneering study that first highlighted

backdoor threats in deep learning models. It employs a
static patch, e.g., a flower placed in the corner of an im-
age, as the backdoor trigger. Any input containing this
patch is then misclassified to the attack target label.

• Dynamic attack [47] utilizes a generative model to cre-
ate dynamic patch triggers that vary in pattern and loca-
tion across images. This diversity enhances its stealthi-
ness against backdoor detection methods.

• Input-aware attack (IA) [42] improves upon dynamic
backdoors by generating more diverse and sample-
specific triggers to evade backdoor detection. The IA trig-
gers are more invisible in the input space.

• Deep Feature Space Trojan (DFST) [7] leverages a
generative adversarial network (GAN) to inject a certain
style (e.g., sunrise color style) to given training samples.
It also introduces a detoxification procedure by iteratively
training on ABS [35] reverse-engineered backdoors to
reduce the number of compromised neurons that can be
leveraged by existing scanners for successful detection.
We follow the original paper and poison models with
two settings: one-round detoxification and three-rounds
detoxification.

• Blend attack [6] injects a random perturbation pattern
on the training samples of non-target classes and changes
the ground truth labels of these samples to the target
class (label 0). We use the random pattern reported in the
original paper and use a blend ratio of α = 0.2.

• Adaptive Blend (A-Blend) [45] refines the typical blend
attack by including correctly labeled trigger-planted
samples to enhance backdoor learning regularization.
It also introduces asymmetric trigger strategies that
improve the ASR and diversify the representations of
poisoned samples.

• Sinusoidal Signal attck (SIG) [2] injects a strip-like
pattern on the training samples of the target class and
retains the original ground truth labels. We follow the
setting in the original paper and generate the backdoor
pattern using the horizontal sinusoidal function with
∆ = 20 and f = 6. We use label 0 as the target class and
poison 8% of the training data in the target class.

• LIRA [14] designs a learnable trigger injection function
to be used during model poisoning. Specifically, it trains

a generative model to inject triggers concurrently with
backdoor model training. LIRA utilizes the dataset itself
to enhance the specificity of the backdoor triggers.

• WaNet [41] uses elastic image warping that deforms
an image by applying the distortion transformation
(e.g., distorting straight lines) as the backdoor. We
download three backdoored models from the official
repository [41], which are trained on CIFAR-10, GTSRB,
and CelebA, respectively.

• Invisible attack [29] leverages a generator to encode
a string (e.g., the index of a target label) onto an input
image. We download the pre-trained generator from
the official repository [28] and use it to inject invisible
backdoors following the setting in the original paper.

• Clean Label attack (CL) [59] generates adversarial
perturbations on the training samples in the target class
using an adversarailly trained model. It then injects a
2 × 2 grid at the top left corner of the target-class inputs
and retain their ground truth labels. We use L∞ bound of
8/255 for crafting adversarial perturbations, use label 3
as the target class, and poison 50% of the training data in
the target class following the official repository [60].

• Narcissus [69] introduces a clean-label backdoor attack
that is both stealthy and robust. Specifically, it trains a
surrogate model to capture the important features from
the target label, which are then used as the backdoor
trigger. It selectively poisons only the images of the target
class with this trigger, compelling the model to associate
the trigger with the target label without altering the labels.

• COMBAT [20] improves the clean-label backdoor tech-
nique beyond Narcissus by leveraging a generative model
to produce the triggers. It also incorporates frequency
features and introduces an alternative training method to
enhace the learning of the backdoor trigger function and
the poisoned model.

• Filter attack [35] applies Instagram filters on training
samples and changes the ground truth labels of these
samples to the target class. There are various filters can
be used to poison data, such as Gotham filter, Nashville
filter, Kelvin filter, Lomo filter, Toaster filter, etc.

C. Results on Filter Attack
For filter attack, we leverage pre-trained backdoored
models downloaded from the TrojAI competition [43].
The results are reported in Figure 6. The x-axis and y-axis
denote the model IDs and the ASR, respectively. The bars
in the light/dark colors show the ASR of injected backdoors
before/after applying different defense techniques. Observe
that FT (blue bars) can only repair half of the evaluated
models (17 out of the 34 models). This is expected as back-
door attacks include clean data together with backdoored
samples during training. Fine-tuning only on clean samples
may not eliminate the backdoor patterns that have already
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Figure 6. ASR of filter attack before (light color) and after (dark color) applying different defenses.
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Figure 7. Acc. of filter-backdoored models before (light color) and after (dark color) applying different defenses.

been learned by backdoored models. NAD leverages the
teacher-student structure and treats the model from FT
as the teacher network. Its performance hence is limited
by Fine-tuning. This can be observed from the orange
bars in Figure 6. NAD is only able to eliminate five more
backdoors (with a total of 21 models). ANP has limited
performance on TrojAI models, with only 15 poisoned
models being repaired. The TrojAI backdoored models
were trained by NIST [43], and different training strategies
including random transformations, adversarial training,
etc., were employed to make injected backdoors more
robust and hard to detect. These strategies may reduce
the sensitivity of individual neurons on backdoor patterns.
ANP is hence not able to identify compromised neurons
and fails to remove injected backdoors. This observation
is consistent with the results on DFST backdoors that apply
detoxification to reduce compromised neurons.

ABS can only repair 15 models. As the injected back-
doors in TrojAI models are label-specific, ABS may not
be able to identify the correct victim-target class pair. The
inverted triggers fail to expose the injected backdoor be-
haviors. Unlearning on those triggers hence cannot repair
models. MOTH can eliminate more backdoors than other
baselines with 28 fixed models. As discussed in the moti-
vation section, semantic backdoors perturb all pixels on the
input and are dynamic, while MOTH focuses on patch-like
static backdoors. It can raise the bar for semantic backdoors
to some extent but still fails to repair 6 TrojAI backdoored
models. MARTINI, on the other hand, can eliminate all the
backdoors with an average ASR down to 0.55%, outper-
forming the others. The accuracy of backdoored models
before and after repair is shown in Figure 7 (in Appendix).
Overall, all the approaches incur a very small accuracy
degradation on average (< 0.3%), except for ANP (1.16%).

Table 4. Adaptive Attacks.

Target
20% Poisoning MARTINI 50% Poisoning MARTINI

Acc. ASR Acc. ASR Acc. ASR Acc. ASR

0 83.64% 60.43% 83.94% 9.94% 67.86% 74.94% 75.71% 4.42%
1 81.61% 58.48% 84.57% 10.46% 70.64% 79.99% 81.79% 6.01%
2 84.43% 56.88% 83.67% 12.79% 67.99% 77.74% 81.50% 5.70%
3 84.91% 60.22% 85.56% 7.18% 70.73% 74.81% 75.02% 0.79%
4 82.91% 76.90% 83.29% 10.55% 71.87% 75.35% 75.80% 9.47%
5 80.11% 76.04% 84.87% 5.00% 66.70% 78.09% 79.12% 11.28%
6 84.47% 64.13% 82.78% 12.93% 71.93% 73.24% 84.72% 14.31%
7 82.32% 76.69% 83.71% 13.11% 68.37% 84.39% 78.61% 11.09%
8 84.18% 62.56% 86.06% 12.16% 71.50% 75.27% 82.92% 12.86%
9 82.57% 69.63% 84.63% 9.14% 70.85% 75.50% 79.20% 10.29%

MARTINI has the smallest accuracy degradation of 0.06%.

D. Adaptive Attacks

We conduct an adaptive attack by optimizing a trigger
pattern during poisoning while applying our mitigation
method (the adaptive knowledge). The goal is to prevent
the model from learning simple triggers that can be easily
generated, making the final injected backdoor hard to invert
and capable of evading our defense. The adaptive attack
starts with a random trigger and stamps it on training
images along with the target label for poisoning. At each
training iteration, it also applies the inverted trigger, stamps
it on images, and uses the ground truth label for training.
The attack then optimizes the injected trigger on the
current adversarially-trained model and uses this optimized
trigger for injection. The poisoning process is iterative and
continues until convergence.

The experiment is conducted on a ResNet20 model with
CIFAR-10, evaluating different choices of the 10 classes as
the target label. The results are shown in Table 4. The first
column shows the target label. Columns 2-5 show the accu-
racy and ASR for the backdoored models (with a 20% poi-
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soning rate) before and after repair by our method. Columns
6-9 present the results using a 50% poisoning rate for adap-
tive attacks. Observe that with a 20% poisoning rate, the
backdoored models have an average accuracy of 83.12%
and an ASR of 66.20%. By increasing the poisoning rate
to 50%, the ASR improves to 76.93%, with a significant ac-
curacy degradation to 69.84% on average. The ASRs are
slightly higher for target labels 4, 5, and 7 with the 20%
poisoning rate, and for label 7 with the 50% poisoning rate.
As MARTINI aims to mitigate backdoors while the poison-
ing tries to inject a backdoor, these two contradicting goals
result in the accuracy being much lower than a clean model
(91.52%) and the ASR being relatively low as well. By ap-
plying our method to the poisoned models, the ASR drops
to 10.33% (20% poisoning rate) and 8.62% (50% poison-
ing rate) without accuracy degradation (84.31% and 79.44%
on average, respectively), as shown in Table 4. This delin-
eates the resilience of our mitigation technique to adaptive
attacks. Regarding different target labels, the ASRs for re-
paired models are slightly higher for labels 2, 6, and 7 with
the 20% poisoning rate, and for labels 6 and 8 with the 50%
poisoning rate. These slight variations are due to the fact
that our method does not mitigate backdoors equally for all
classes. Nonetheless, the repaired models all have less than
15% ASR, demonstrating the robustness of our technique
against adaptive attacks with different target choices.

We also conduct an adaptive attack where backdoors
have the same feature in different regions to counter our
regional transformation. The results show that our method
reduces the ASR from 98.80% to 0.28% with only a 0.83%
accuracy degradation.

E. Defense Efficiency
We use an off-the-shelf encoder and only train the decoder,
which takes 32.76 minutes. This is a one-time effort, and
the trained decoder can be used for generating backdoors
on different datasets.

Figure 8 shows the time in seconds for mitigating
backdoors by different defenses. Most of the defense
techniques can finish within 100 seconds. MCR, ABS, and
MOTH have higher time costs, requiring more than 250
seconds. Overall, the time cost of MARTINI is comparable
to that of other baselines. Recall that our method achieves
more than 20% ASR reduction compared to baselines on

Stop Sign Speed Limit Stop SignStop Sign

(a) Clean (b) Misclassification (c) Injection (d) Localization

Figure 9. Object detection backdoors.

Table 5. Mitigating backdoors in object detection. The best results
highlighted with blue color.

Attack Model
Original FT NAD Ours

mAP ASR mAP ASR mAP ASR mAP ASR

Miscls. SSD 87.74% 100.00% 81.85% 92.38% 80.60% 75.24% 82.82% 9.05%
F-RCNN 96.50% 100.00% 92.13% 71.43% 91.23% 15.24% 92.95% 5.71%

Inject. SSD 85.20% 100.00% 79.79% 100.00% 79.29% 99.38% 81.23% 11.90%
F-RCNN 97.03% 100.00% 90.62% 43.33% 89.82% 17.50% 91.16% 7.62%

Local. SSD 85.32% 82.38% 82.61% 0.00% 82.02% 0.00% 85.21% 0.48%
F-RCNN 96.91% 100.00% 91.84% 0.00% 91.74% 0.00% 92.50% 0.00%

Average 91.45% 97.06% 86.47% 51.19% 85.78% 34.56% 87.65% 5.79%

many attacks, especially on recent advanced attacks, which
is a critical aspect of backdoor defense.

F. Extension to Other Applications

Object Detection. We leverage the TrojAI [43] dataset for
object detection. This dataset consists of images synthe-
sized with real street backgrounds and multiple traffic signs
as foreground objects. We consider three types of back-
door attacks [4, 5, 31]: misclassification, injection, and lo-
calization. Figure 9(a) shows the clean input and its correct
prediction. Figure 9(b) demonstrates the object misclassifi-
cation attack, where a yellow triangle, serving as the back-
door trigger, is stamped on the stop sign, causing the model
to mis-recognize the sign as the speed limit. Figure 9(c)
illustrates the injection attack, where the model falsely rec-
ognizes the trigger as a stop sign. Figure 9(d) visualizes
the object localization attack, where the trigger causes the
predicted object bounding box to shift away from its cor-
rect location. We conduct experiments using two well-
known model architectures, SSD [33] and Faster-RCNN
(F-RCNN) [46]. The clean object detection performance is
measured by mean average precision (mAP). We adapte two
baselines from image classification, i.e., FT and NAD. The
experimental results are presented in Table 5. On average,
MARTINI reduces the ASR from 97% to below 6%, whereas
the baselines still maintain ASR at high levels, over 34%,
with greater performance sacrifices than MARTINI. This un-
derscores the efficacy of MARTINI in mitigating backdoors
in object detection, as it effectively approximates and elim-
inates the backdoor effects. Our mitigation is not perfect.
In some cases, MARTINI still has a non-trivial ASR, such
as misclassification and injection attacks on SSD models.
This might be due to the inherent robustness of backdoor
attacks in object detection models, as these models involve



Table 6. Mitigating backdoors in NLP.

Poisoned
Model

Original NAD Ours

Acc. ASR Acc. ASR Acc. ASR

Model-1 85% 92% 85% 29% 84% 18%
Model-2 89% 94% 88% 27% 88% 17%
Model-3 87% 91% 88% 29% 87% 14%

Table 7. Ablation study on different design choices.

Method Accuracy ASR

Original 91.52% 81.36%
MARTINI 90.31% 1.41%

w/o Lcontent 90.13% 38.86%
w/o LSSIM 90.36% 35.93%
w/o Lnorm 90.27% 43.44%
w/o Lsmooth 90.13% 32.04%

complex predictions of bounding boxes and labels. Never-
theless, the results still demonstrate the generalizability of
MARTINI to object detection.

NLP Sentiment Analysis. The idea of our technique can
be extended to defend against natural language process-
ing (NLP) backdoors by leveraging a sentence-to-sentence
model. A specially designed transformation layer can trans-
form abstract features of sentences to embed backdoor ef-
fects. Adversarially training on the generated backdoor
samples can then eliminate these NLP backdoors. We apply
MARTINI to NLP sentiment analysis. We use a pre-trained
DistilBERT as the generator, insert our transformation layer
before the decoding layer, and adversarially train the model.
We leverage three TrojAI-round5 poisoned models (injected
with a phrase trigger), and the results are reported in Ta-
ble 6. We adapt NAD from image classification to this set-
ting. From the table, we observe that MARTINI reduces ASR
to 16% on average, with a 1% accuracy degradation. The
baseline NAD can only reduce ASR to 28%. This result
shows that MARTINI has good potential for defending NLP
backdoors. We leave further exploration to future work.

G. Ablation Study
MARTINI features a few important design choices. In this
section, we aim to study these choices individually to bet-
ter understand their contributions to the performance. In
particular, we study the effects of four loss terms used in
backdoor generation. The ablation study is conducted on
a ResNet20 model with CIFAR-10, and the results are pre-
sented in Table 7. Row 1 denotes the original backdoored
model and row 2 the final result of our method. Rows 3-6
present the results of excluding each loss term individually
during backdoor mitigation.

Observe that Lcontent can boost the performance by
37.45%. This is because it constrains the difference of fea-
ture representations between backdoor samples and normal
inputs. Without it, the backdoor samples can be too dif-

Table 8. Impact of hyperparameters.

z 1 2 3 4

Accuracy 69.26% 67.99% 68.61% 67.66%
ASR 17.00% 8.33% 5.89% 10.44%

λ0 0.0005 0.001 0.002 0.005

Accuracy 68.59% 68.61% 67.49% 68.24%
ASR 16.56% 5.89% 11.11% 13.67%

λ1 50 100 150 200

Accuracy 68.96% 68.61% 68.42% 68.49%
ASR 15.11% 5.89% 12.33% 9.33%

λ2 0.03 0.05 0.1 0.2

Accuracy 68.76% 68.61% 68.44% 68.34%
ASR 9.44% 5.89% 6.67% 14.89%

ferent from normal inputs internally and the model cannot
learn the correct features. LSSIM and Lsmooth have simi-
lar ASR reduction. The SSIM score directly constrains the
quality of generated backdoor samples looking similar to
original inputs. Lsmooth further smooths the backdoor sam-
ples to improve the generated quality. Lnorm on the nor-
malization layer is also quite important as it makes sure the
normalized inputs are not far from the original distribution.
Impact of Hyperparameters. We study the impact of four
hyperparameters used in Equation 2 and Equation 8. The
study is conducted on a backdoored model by DFST on
STL-10, which has 72.18% accuracy and 98.67% ASR.
The results are shown in Table 8. Observe that the impacts
are small. Most settings can achieve good ASR reduction.
In comparison, the lowest ASR achieved by the baselines
is 48.44%. The best λs are chosen based on that all the loss
terms are at the same scale as discussed below Equation 8.
That is, the weighted loss value for each term shall be
similar.
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