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Abstract—The dramatic rise of Android application (app) mar-
ketplaces has significantly gained the success of convenience for mo-
bile users. Consequently, with the advantage of numerous Android
apps, Android malware seizes the opportunity to steal privacy-
sensitive data by pretending to provide functionalities as benign
apps do. To distinguish malware from millions of Android apps,
researchers have proposed sophisticated static and dynamic anal-
ysis tools to automatically detect and classify malicious apps. Most
of these tools, however, rely on manual configuration of lists of fea-
tures based on permissions, sensitive resources, intents, etc., which
are difficult to come by. To address this problem, we study real-
world Android apps to mine hidden patterns of malware and are
able to extract highly sensitive APIs that are widely used in An-
droid malware. We also implement an automated malware detec-
tion system, MalPat, to fight against malware and assist Android
app marketplaces to address unknown malicious apps. Compre-
hensive experiments are conducted on our dataset consisting of
31 185 benign apps and 15 336 malware samples. Experimental re-
sults show that MalPat is capable of detecting malware with a high
F1 score (98.24%) comparing with the state-of-the-art approaches.

Index Terms—Android applications, malware detection,
permission-related APIs, random forests, software security.

I. INTRODUCTION

THE past few years have witnessed the drastic increase of
mobile apps providing various facilities for personal and

business use. The proliferation of mobile apps is due to billions
of users who enable developers to earn revenue through adver-
tisements, in-app purchases, etc. A multitude of apps developed
by many independent developers, involving unfriendly ones,
can be hard for users to determine the trustworthiness of these
apps. Whenever users install a new app, they are under the risk
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of installing malware. Unlike desktop apps, mobile apps can
have the privilege, after declared (e.g., in Manifest file of An-
droid platform), to access sensitive information such as contact
lists, SMS messages, GPS, etc. To make full use of resources of
mobile devices and support abundant functionalities of mobile
apps, such mechanism of permission declaration remarkably
fulfills its job. Unexpectedly, however, it also provides the op-
portunity for malware to hijack and steal sensitive information.
According the report released by McAfee [1] in March 2016,
more than 13 million mobile malware samples were collected
by 2015, and it recorded a 72% increase in new mobile mal-
ware samples as to the last quarter. Data leaks are the typical
behaviors of malware to steal users’ contact lists, personal in-
formation, even money. As more people change their payment
habits from cash to mobile banking, it has been a serious chal-
lenge to protect mobile users from spiteful attackers who may
steal bank account credentials. Rasthofer et al. [2] identified a
new malware family Android/BadAccents that stole, within two
months, the credentials of more than 20 000 bank accounts of
users residing in Korea. There are some underground groups
whose revenues are earned by trading stolen bank account cre-
dentials. Symantec reported [3] that one underground group had
made $4.3 million in purchases using stolen credit cards over a
two-year period.

Under such severe situation of the security and privacy of
mobile users, identifying malicious apps and defending against
them from stealing sensitive information have posted an es-
pecially important challenge. Rasthofer et al. [4] proposed a
machine-learning approach, SUSI, to identify lists of sources of
sensitive data (e.g., user location) and sinks of potential chan-
nels to leak such data to an adversary (e.g., network connection).
The categories published by SUSI along with other new cate-
gories of sensitive sources were adopted by MUDFLOW [5] to
identify malware as well as their abnormal usage of sensitive
data. Their work both focused on the data flows that originate
from sensitive sources, which were effective and efficient as to
identify abnormal behaviors of malware, but when it comes to
classifying malicious apps, these approaches can be inefficient
and hard to assist Android app marketplaces fighting against
malware. Permissions declared in Manifest file are easy to cap-
ture the intention of apps for data usage, which can be utilized
to identify malicious behaviors of apps [6]–[8]. Permission-
based methods avoid high cost of time and computation, which,
however, only capture the coarse-grained features of apps. Ap-
plication programming interfaces (APIs) provided by Android
operating system, in contrast, profoundly demonstrate the full
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Fig. 1. Detecting malware via permission-related APIs. Starting from a col-
lection of malicious and benign apps, we mine the patterns of malware. Based
on extracted highly sensitive APIs, we train a two-class classifier to identify
unknown apps.

picture of app behaviors in data usage. DroidAPIMiner [9] con-
ducted an analysis to extract API-level features by statically
counting the numbers of APIs used in malware and benign
apps to capture different usage. However, the frequency anal-
ysis adopted by DroidAPIMiner may miss some key features.
Furthermore, APIs that are not permission related can be less
of value, and may introduce noise affecting feature extraction.
In addition, DroidAPIMiner also utilized data flow analysis to
obtain the frequent parameters, which exposes the similar is-
sue as SUSI [4] and MUDFLOW [5] did. DREBIN [6] also
adopted APIs as features but with more other types of fea-
tures, such as hardware components, permissions, intents, etc.
These features were all manually selected and required pro-
fessional background knowledge. Besides, the final feature set
contained about 545 000 features, which was a very large num-
ber of features and even more than the number of samples
(123 453 benign apps and 5560 malware samples). It could
require more time and efforts to extract these features as well
as to train machine-learning models on them. Instead of using
raw features of APIs, Zhang et al. [10] constructed a weighted
dependency graph of APIs to represent the features of apps.
Their approach was based on data flow analysis and the graph
generation process was complex, which could be inefficient to
assist app marketplaces. Therefore, we employ a machine learn-
ing approach to automatically extract permission-related APIs
that can be utilized to distinguish malware from millions of
apps.

In this paper, we study malicious and benign Android apps to
mine hidden patterns of malware from fine-grained perspective.
Android’s main security mechanisms are based on sandboxes,
which control physical and virtual resources of mobile devices
to restrict the privilege of mobile apps, and permission mech-
anism is one of them. As permissions present the sensitive us-
age of Android resources, we focus on permission-related APIs
currently employed in various Android apps. Differing from
permission-based methods, our study captures fine-grained fea-
tures extracting from APIs that contain more information of
apps’ behaviors. In addition, unlike API-level approaches, we
neglect those APIs unprotected by permissions as they may in-
troduce noise into the classification process and increase the
computation cost. Our study includes three parts, illustrated in
Fig. 1 and detailed later in the paper. First, we collect real-world
Android apps consisting of 31 185 benign apps and 15 336 mal-
ware samples from the Internet. Second, based on the analysis
of our collected datasets, we extract hidden patterns of malware

with respect to benign apps in terms of Android APIs.1 Finally,
with the extracted features, malicious apps can be effectively
detected and classified by malware detection systems. Conse-
quently, we present MalPat, an automated malware detection
system, which mines malware patterns from known malware
samples automatically, and identifies malware efficiently.

The contributions of this paper are summarized in the
following:

1) We present a thorough study on the different usage of
permissions and APIs using statistical analysis techniques,
and reveal their capabilities of differentiating malware and
benign apps.

2) We mine the hidden patterns of malware by extracting
highly sensitive APIs protected by permissions and ana-
lyzing the correlation of different APIs.

3) We make full use of characteristics of the machine learn-
ing approach by engaging it much earlier in the system
architecture to learn the potential features from existing
data.

4) We propose MalPat,2 an automated malware detection
system, which extracts crucial features from tens of thou-
sands of apps automatically, to assist Android app mar-
ketplaces to fight against malware.

5) We conduct comprehensive experiments on a large-scale
dataset consisting of 31 185 benign apps crawled from
Google Play [11] and 15 336 malware samples collected
from VirusShare [12] and Contagio [13]. The experimen-
tal results show that MalPat can detect malware with the
F1 score of 0.9824 using only 50 APIs, and outperforms
the state-of-the-art approaches.

The rest of this paper is organized as follows. Section II dis-
cusses the related work addressing privacy and security prob-
lems on Android platform. Section III describes the dataset that
we have collected. In Section IV, we statistically analyze the
usage of permissions and APIs, mine the hidden patterns of
malware, and discuss highly sensitive APIs. We then present
our malware detection system, MalPat, in Section V. Compre-
hensive experiments on the real-world dataset are conducted in
Section VI. Finally, the conclusion and future work are described
in Section VII.

II. RELATED WORK

Malware detection and classification are challenging prob-
lems, especially on mobile platforms. Researchers have paid
great efforts to address these problems in various ways. In
this section, we discuss the previous work addressing malware
problems.

A. Dynamic Analysis

In-depth analysis of malware and app behaviors is carried out
by many researchers from dynamic perspective. TaintDroid [14]
identified sensitive information at a taint source, and tracked, dy-
namically, the impact of labeled data to other data that might

1In the rest of this paper, API and Android API are both referred to the
permission-related API on Android platform.

2http://malpat.inpluslab.com
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leak the original sensitive information. The impacted data were
identified before they left the system at a taint sink. Comparing
to TaintDroid, more information leaks were found by VetDroid
[15]. It constructed permission use behaviors to examine the in-
ternal sensitive behaviors and find information leaks. VetDroid
can help identify subtle vulnerabilities in some apps. To cap-
ture both the OS-level and Java-level semantics simultaneously
and seamlessly, DroidScope [16] collected detailed native and
Dalvik instruction traces to track information leakage through
both Java and native components. These dynamic methods all
aim to conduct taint analysis to detect suspicious behaviors
during runtime. With the dramatically increasing number of
Android apps, it restricts dynamic methods from high-speed de-
tection. Besides, we aim to detect malware instead of capturing
stealthy behaviors, dynamic analysis can be inefficient to assist
mobile app marketplaces fighting against malware.

B. Static Analysis

Differing from dynamic analysis, static approaches can ef-
fectively deal with millions of apps and analyze patterns of
malicious and benign behaviors without online running. Pre-
vious studies focused on malware detection and classification
were conducted via various methods, such as static taint analy-
sis [17], information flow analysis [18], [19], and probabilistic
models [7], [20], etc. DroidRanger [8] utilized a permission-
based behavioral footprinting scheme to detect new samples of
known Android malware families and a heuristics-based filter-
ing scheme was adopted to identify certain inherent behaviors
of unknown malicious families. Permission-based method is
coarse-granted and cannot capture more detailed behaviors of
apps. We analyze and elaborate more details in the rest of this
paper. To capture fine-grained information, Apposcopy [17] pro-
posed a high-level language to capture the signatures describ-
ing semantic characteristics of malware families. Based on the
extracted signatures, a static analysis was conducted to detect
certain malware families. The main concern of Apposcopy is
to identify certain family of malware, which is different from
the purpose of our work. Based on static data-flow analysis,
Flowdroid [21], ded [22], and CHEX [23] were able to pre-
cisely detect potential malicious behaviors of Android apps.
Such technique can effectively capture the exactly stealthy and
malicious behaviors of apps, but it can introduce a very high
overhead and be inefficient to fight against malware.

C. Machine Learning Approach

Classifying malware automatically is an open problem com-
monly addressed by employing machine learning techniques.
Permissions are designed to protect sensitive resources on An-
droid platform, which directly demonstrates the sensitive be-
haviors of Android apps. Bartel et al. [24] found that there were
a large part of apps suffering from permission gaps, i.e., not all
the permissions they declared were actually used. By analyz-
ing permission usage among millions of benign and malicious
apps, they can effectively expose abnormal behaviors and fi-
nally distinguish malware from various apps. Peng et al. [7]
utilized the advantage of permissions and was able to correctly

classify malware. However, the permission declaration of An-
droid apps is coarse grained, lacking the ability of capturing
in-depth behaviors of malicious apps. To this point, Gorla et al.
[25] selected a subset of APIs that were governed by Android
permission setting naming sensitive APIs, which were identified
by Felt et al. [26]. These sensitive APIs were used as binary fea-
tures to train an OC-SVM to identify the outlier apps. Similarly,
DREBIN [6] also utilized APIs as features but with more other
types of features (hardware components, permissions, intents,
etc.). These features were all manually selected and required
professional background knowledge. Besides, the final feature
set contained about 545 000 features, which was a very large
number of features and even more than the number of samples
(123 453 benign apps and 5560 malware samples). It could re-
quire more time and efforts to extract these features as well as
to train machine-learning models on them. Utilizing the cate-
gorization of Android APIs published by SUSI [4], Avdiienko
et al. [5] added three new categories to detect malware: sensitive
resources, intents, nonsensitive sources, and sinks. With these
categories as app features, Avdiienko et al. trained a ν-SVM
[27] to detect malware (MUDFLOW). Differing from the fea-
tures used in MUDFLOW, we only adopt the permission-related
APIs used by apps without any other additional information to
detect malware. Moreover, random forests are employed in our
malware detection system as the classifier to identify malware.
Random forest is a well-known machine learning approach in
classification and regression, which consists of a set of binary
decision trees [28]. By training multiple decision trees, random
forests combine the results from these decision trees with voting
approach. Details of the training process of random forests are
illustrated in Section V.

Previous studies focused on data flow can be inefficient for
malware detection and classification, resulting in high cost of
time and resources in fighting against malware. In contrast, sen-
sitive or critical API-based approaches are easy to construct and
can adjust rapidly according to the change of malware. How-
ever, very few efforts have been made in conducting a thorough
analysis of permission-related APIs, which can significantly im-
prove the efficiency of malware detection with easy and practical
approaches. In this paper, we try to address this problem and
give an empirical study of permission-related APIs.

III. DATASET COLLECTION

To mine the hidden patterns of malware, we study the behav-
iors of malicious and benign Android apps in the real world. In
this section, we briefly describe two sets of Android apps and
their characteristics.

Benign apps: To collect the benign apps, we used Google
Play [11], a leading Android app marketplace in the world. Be-
nignRan, the first dataset, consists of 28 787 apps randomly
collected from May to December 2015. The category distribu-
tion of BenignRan is shown in Fig. 2. The right part in light
gray are the categories belonging to Games category. Except for
the Tools category, containing 3787 apps, other categories all
include almost similar amount of apps. The randomly collected
apps may have bias on categories and API usage. To ease such
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Fig. 2. Categories of Android Apps collected from Google Play, where the
green histograms are the categories belonging to Games category.

potential influence, we also downloaded the top 100 most popu-
lar free apps for each of the 30 app categories based on the same
list. Avdiienko et al. [5] had collected as of March 1st, 2014.
Although some apps cannot be found due to unknown reasons,
we were still able to collect 2398 apps, which formed our sec-
ond benign dataset, BenignPop. These two benign datasets are
all employed in our experiments comprising the whole benign
dataset, BenignAll, with 31 185 Android apps, and the detailed
discussions are presented in Section VI.

Malicious apps: Our malicious apps were collected from two
sources:

1) A set consisting of 24 317 malicious apps was obtained
from VirusShare [12] with the period from May 6th, 2013
to March 24th, 2014. As some of these apps could not
be correctly decompiled or the .apk files were missing,
14 843 apps were left for further study and evaluation.

2) 493 Android malware samples provided by Contagio [13]
were also adopted in our dataset. These malicious apps
were collected from October 2010 to January 2016.

Hence, the malware dataset totally contains 15 336 malicious
apps. It should be noted that there is no overlap between the
benign and malicious app datasets.

IV. PATTERN MINING

In this section, we first make a rough analysis on permis-
sion and API distribution of Android apps, respectively. In the
API-permission mapping list extracted by Pscout [29], there are
32 304 APIs governed by 71 permissions. As the differences
of APIs in different versions of Android operating systems, we
adopt the API mapping list of Jelly Bean (Android 4.1) in the
following analysis. The influence of API change, which has
been studied by previous work [30], is out of the scope of this
paper. By analyzing permissions and APIs used in malicious
and benign apps, we can obtain a brief statistical result indicting
the difference between these two types of apps.

In order to understand to what extent benign and malicious
apps are of difference with respect to permissions and APIs, we
study two research questions in the following:

1) RQ1 : Is the usage of permissions in malware significantly
different from that of benign apps? This research question

aims at revealing the permission usage patterns of mal-
ware as compared to benign apps. The conjecture is that
the usage of permissions would not significantly differen-
tiate malware from benign apps. This conjecture is based
on the previous work carried out by Felt et al. [26] point-
ing out that apps tend to request extra privileges (declare
more permissions than they actually need). Thus, we test
the following null hypothesis:
H0p : There is no significant difference between the per-
missions used by malicious and benign apps.

1) RQ2 : Is the usage of APIs in malware significantly dif-
ferent from that of benign apps? This research question
is similar to RQ1 ; however, it considers APIs instead of
permissions as the main factor to analyze. It is intuitive
that apps tend to request more permissions in case of fur-
ther use of privileged resources (e.g., APIs), but never
actually acquire corresponding APIs. Based on this rea-
sonable fact, APIs could reveal the real behaviors of apps
to some extent. Specifically, we test the null hypothesis as
H0a : There is no significant difference between the APIs
used by malicious and benign apps.

In the following sections, detailed analysis on permissions
and APIs is conducted by comparing their use in corresponding
benign and malicious apps. Specifically in Section IV-C, we use
Mann–Whitney test [31] so as to capture statistical significance
of the different usage of permissions and APIs in malware and
benign apps.

As to mining the hidden patterns of malware comparing to
benign apps, we utilize machine learning approaches and suc-
cessfully extract highly sensitive APIs.

A. Permission Distribution

An overview study of privacy and security is conducted on the
benign and malicious app datasets, and Fig. 3 gives the result of
the permission usage in these apps. The top 25 most frequently
used permissions are illustrated in Fig. 3 and sorted by the order
of usage percentage in the benign app dataset.

As shown in Fig. 3, some of the highly utilized permissions are
both adopted by benign and malicious apps, which can hardly be
distinguished between these two types. Nevertheless, there are a
few permissions that are frequently used by malicious apps, such
as ACCESS WIFI STATE, SEND SMS and GET TASKS,
etc. WiFi state can be utilized to obtain the network information
as well as location context of users, which may be the reasons
why it is highly used. As to SEND SMS, it is obvious that
bank verification and other sensitive information are protected
via messages. The last permission seems unreasonable that it is
widely adopted in malicious apps. However, if we take a look
into the APIs protected by the permission GET TASKS, we
can find one of them, i.e., getRecentTasks(). As illustrated
in the API documents [32], this method returns a list of the
tasks that the user has recently launched, which can be used
by malware for malicious purposes, such as monitoring user
behaviors, attacking certain tasks, etc. This method is no longer
available to third party applications, but there may still remain
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Fig. 3. Top 25 most used permissions in benign and malicious app dataset.

Fig. 4. Difference of permission usage between malicious and benign apps,
where the percentage of the differences is larger than 10%.

such methods that can be used for malicious purposes, which is
studied in this paper.

To obtain a deeper analysis of the difference of permission
usage between malicious and benign apps, we compare the per-
centage of two datasets. Fig. 4 shows the results that the per-
centage of the differences is larger than 10%, where the positive
values represent that more malicious apps use the current per-
mission than benign apps. There are 12 permissions denoting a

Fig. 5. Top 25 most used APIs in benign and malicious app dataset.

big difference between malicious and benign apps. The differ-
ences of three permissions, READ EXTERNAL STORAGE,
WRITE SYNC SETTINGS, and USE CREDENTIALS,
even surpass 20%, but these three permissions are more used by
benign apps rather than malware, which is very different from
the study conducted by Peng et al. [7]. The malware dataset
used in their study contained only 378 apps, which may cause
unpredictable deviations. Based on our datasets, three permis-
sions expose significant difference between malicious and be-
nign apps, which can be utilized to distinguish their types. Such
coarse-grained features, however, cannot effectively differenti-
ate malicious and benign apps which is discussed in Section VI.
Therefore, regarding the research question RQ1 , it can be ob-
served that some permissions present the ability of distinguish-
ing malware and benign apps, but it is still hard to determine
whether permissions actually possess such feature in the big
picture. We try to answer this question in Section IV-C. In the
following section, we study the difference of these two types of
apps from a fine-grained perspective, i.e., API usage.

B. API Distribution

Statistical patterns of API usage are studied and the top
25 most frequently used APIs in both benign and malicious
app datasets are illustrated in Fig. 5. There are 31 APIs
in the figure, where the whole mapping of API IDs rang-
ing from 0 to 32303 is listed on our website [33]. We can
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Fig. 6. Difference of API usage between malicious and benign apps, where
the percentage of the difference is larger than 20%.

observe that most of the top used APIs are not distinguish-
able as they are all widely employed in both benign and mali-
cious apps. However, API IDs, 14824, 15057, and 15225, are
more frequently used in malware comparing with benign apps.
75.15% malicious apps use the method, getDeviceID(), from
android.telephony.TelephonyManager package. The method
getDeviceID() returns the unique device ID, e.g., the IMEI for
GSM and the MEID or ESN for CDMA phones [34], which can
be used to identify mobile devices as the tag to trace anything
occurring on those devices. If such sensitive identifications are
utilized for malicious purposes, it can be dangerous and risky
to the privacy and security of mobile users. Therefore, meth-
ods that may lead to unsecure information leaks should be paid
close attention, especially the ones that are frequently employed
in malware rather than benign apps.

To find the big difference of API usage between two types
of apps, we select those APIs whose differences are larger
than 20% in Fig. 6. The methods whose API IDs are 9723,
14824, 15057, 15225, and 17626 are more frequently en-
gaged in malicious apps. Specifically, the difference of the
method 15057 is larger than 40%. We list these APIs with
large differences in Table I. The method with API ID 15057 is
getSubscriberId() from the same package of getDeviceID().
Differing from getDeviceID(), the method getSubscriberId()
can be much more dangerous as it returns the unique sub-
scriber ID, e.g., the IMSI for a GSM phone [34]. According to
Wikipedia [35], International Mobile Subscriber Identity (IMSI)
is used in any mobile network that interconnects with other net-
works. Especially, for GSM, UMTS and LTE networks, the
IMSI number is provisioned in the SIM card, which means that
it can be utilized to mark any SIM card, i.e., mobile user. Hence,
it is essential and important to mine the API usage patterns from
malicious and benign apps. Table I also lists the permissions that
govern those APIs. Some methods, such as API IDs of 6004,
9723, etc., are protected by more than one permissions. As the
protection of APIs are overlapped via permissions, the features
based on permissions can be hard to clearly and correctly re-
flect the patterns of apps and to detect malware. Therefore, we
employ fine-grained features, i.e., permission-related APIs, to
mine hidden patterns of malicious apps for efficient malware

Fig. 7. Mann–Whitney test (p-value) on Android permissions. The red line
represents the significant level (α = 0.05).

detection. The use of APIs do show a certain level of differ-
ence between malware and benign apps. However, similar to
the analysis in the last section, we still cannot conclude the
significant difference regarding research question RQ2 without
more detailed and thorough analysis, which is carried out in the
Section IV-C.

C. Permissions Versus APIs

In this section, we use Mann–Whitney test [31] to analyze
statistical significance of the different usage between malicious
and benign apps. The significance level to reject the null hypoth-
esis is set as α = 0.05. As the API-permission mapping list [29]
with 71 permissions and 32 304 APIs are employed in the study,
we apply tests on each permission and each API of malicious
and benign apps, as well as the average usage of them in the
following three sections.

1) Permission test: We separate the malicious and benign
apps into two groups, and use the Mann–Whitney test to analyze
statistical significance on every permission. More specifically,
for one permission, if an app (malicious or benign one) declared
this permission, then the sample value is set to 1; otherwise,
it will be set to 0. Therefore, in one test, two sets of samples
represent one specific permission usage of malicious and benign
apps, respectively, and the range of each sample value is {0, 1}.
Fig. 7 shows the p-values of all the tests on permissions and
the red line represents the cutoff level (α = 0.05). Since we ap-
ply multiple tests on permissions, we adjust these p-values using
Holm’s correction procedure [36]. The adjusting procedure sorts
the p-values from n test in ascending orders, and then multiply
them with n to 1, respectively. For instance, let p(1) � p(2)

� · · · � p(n) be the p-values of n test on permissions, and
0 < α < 1 is the significant level. The assessment on the n
hypotheses is performed as follows:

p(1) >
α

n
, p(2) >

α

n− 1
, . . . , p(n) >

α

1
. (1)
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TABLE I
API-PERMISSION MAPPINGS

API ID Package Name Method Name Permission

6004 com.android.providers.media.
MediaProvider

openFileAndEnforce
PathPermissionsHelper()

READ_EXTERNAL_STORAGE
WRITE_EXTERNAL_STORAGE

7483 com.android.browser.
GoogleAccountLogin

<init>() INTERNET

9723 android.telephony.TelephonyManager getCellLocation() ACCESS_COARSE_LOCATION
ACCESS_FINE_LOCATION

9737 android.accounts.AccountManagerService getAuthToken() USE_CREDENTIALS
10094 android.accounts.AccountManagerService invalidateAuthToken() USE_CREDENTIALS

MANAGE_ACCOUNTS
11784 android.content.ContentService removePeriodicSync() WRITE_SYNC_SETTINGS
14824 android.telephony.TelephonyManager getDeviceId() READ_PHONE_STATE
15057 android.telephony.TelephonyManager getSubscriberId() READ_PHONE_STATE
15225 android.telephony.TelephonyManager getLine1Number() READ_PHONE_STATE
15610 com.android.contacts.activities.

ContactDetailActivity
onAttachFragment() READ_PHONE_STATE

GET_ACCOUNTS
READ_SYNC_SETTINGS

17626 android.telephony.SmsManager sendTextMessage() SEND_SMS
20199 com.android.calendar.DayView <init>() READ_CALENDAR
21058 android.net.ConnectivityManager isActiveNetworkMetered() ACCESS_NETWORK_STATE
24662 android.widget.VideoView pause() WAKE_LOCK
24677 android.widget.VideoView stopPlayback() WAKE_LOCK
24713 android.widget.VideoView start() WAKE_LOCK
26195 android.webkit.WebViewClassic drawContent() WAKE_LOCK
26603 android.webkit.WebViewClassic onPause() WAKE_LOCK
26828 android.widget.VideoView setVideoPath() WAKE_LOCK

After the adjustment, we can notice that the usage of 31 (out
of 71) permissions in malware exhibits a statistically signifi-
cant difference as compared to benign apps (p-values < 0.05).
From the above analysis, we cannot directly accept or reject the
null hypothesis H0p as not all the tests presents the statistical
significance. However, the 31 permissions that shows statistical
significance can be employed as major features in analyzing
malware and worth further study.

2) API test: Similar to the last section, this section focuses
on the tests on APIs instead of permissions. For one specific
API, call sites of this API used in the app (malicious or benign
one) indicate the sample value of this app. The sample value is
set as 0 if this API is never used in the app. Therefore, in each
test, two sets of samples represent one specific API usage of
malicious and benign apps, respectively, and the range of each
sample value is [0,+∞). Fig. 8 illustrates the p-values of all
the tests on APIs and the red line represents the cutoff level
(α = 0.05). From the figure, we can observe that most tests on
APIs have p-values larger than α, which indicates that most test
results cannot reject the null hypothesis H0a . Since we apply
multiple tests on APIs as well, the p-values are also adjusted
with Holm’s correction procedure. After adjustment, we notice
that the usage of 106 (out of 32 304) APIs in malware exhibits
a statistically significant difference as compared to benign apps
(p-values < 0.05). From the above analysis, it can be noticed
that only a very small part of APIs usage have the statistical
significance between malware and benign apps. In addition,
with these test results, we cannot directly accept or reject the
null hypothesis H0a , but the usage of 106 APIs in malware is
worth further study as it provides fine granted and more features
than permissions.

Fig. 8. Mann–Whitney test (p-value) on Android APIs. The red line represents
the significant level (α = 0.05).

3) Comparison test: The previous two sections study the
statistical significance of each permission and API one by one,
and the conclusions are based on intuitive analysis. In this sec-
tion, we investigate the different usage of permissions and APIs
between malicious and benign apps by considering all the em-
ployment of these features. For each permission, we compute
the average declaration in all malicious and benign apps, re-
spectively. Thus, two sets of samples represent the average dec-
laration of permissions in malware (malware_perm) and benign
apps (benign_perm), and the range of sample value lies in [0, 1].
The first line of Table II reports the result of the Mann–Whitney
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TABLE II
USE OF PERMISSIONS AND APIS BY MALICIOUS AND BENIGN APPS:

MANN–WHITNEY TEST (p-VALUE)

Test p-value

malware_perm versus benign_perm 0.3442
malware_API versus benign_API <0.0001

test (p-value) on average permission usage. Apparently, the av-
erage usage of permissions in malware does not show a statis-
tically significant difference comparing to benign apps (p-value
> 0.05). Hence, from the perspective of average usage of per-
missions, we cannot reject the null hypothesis H0p , and the
conclusion is that there is no significant difference between the
permissions on average used by malicious and benign apps. For
each API, we compute the average call sites in all malicious and
benign apps, respectively. Thus, two sets of samples represent
the average call sites of APIs in malware (malware_API) and
benign apps (benign_API), and the range of sample value lies
in [0,+∞). The second line in Table II shows the p-value of
the Mann–Whitney test on average usage of APIs. As we can
notice from the table, the usage of APIs in malware exhibits a
statistically significant difference as compared to benign apps
(p-value <0.05). Therefore, from the perspective of average us-
age of APIs, we can reject the null hypothesis H0a , and come
into the conclusion that APIs used by malware are on average
significantly different from APIs used by benign apps.

Summarizing, the usage of APIs in malware demonstrates
statistical significance as compared to benign apps. In analyz-
ing behaviors of malicious and benign apps, APIs can be a
nonnegligible factor with respect to permissions. Therefore, in
this paper, we mainly focus on API usage patterns of malicious
and benign apps. More details are analyzed in the following
sections.

D. Hidden Patterns

To mine the hidden patterns of malware, we study the APIs ex-
tracted by a trained classifier that are highly sensitive in malware
classification, and analyze the co-used APIs in both malicious
and benign app datasets. Some specific APIs have the capa-
bilities to distinguish malware from millions of Android apps.
Therefore, by training a classifier, it gives a full picture of the
API usage in different types of apps and identify malicious pat-
terns with highly sensitive APIs. As co-used APIs can represent
the usage patterns of malware stealing users’ sensitive infor-
mation, the difference of co-used APIs between malicious and
benign apps is an effective and efficient way to attract the prob-
lem. In the following sections, highly sensitive APIs extracted
through a trained classifier are presented, and co-used APIs are
studied based on both malicious and benign app datasets.

1) Highly sensitive APIs: The permission mechanism is uti-
lized to protect sensitive information on Android platform so
as to prevent unpredictable data leaking by malware. However,
there are hundreds and thousands of APIs governed by only one
permission, which makes it hard to distinguish the behaviors

Fig. 9. Weights of Android APIs.

TABLE III
API WEIGHT DISTRIBUTION

Weight >0.01 >0.001 >0.0001 >0 All

APIs 26 137 315 2939 32 304

of apps through one permission as the requirements of func-
tionalities. Permission-related APIs, on the other hand, can not
only hold the features of permissions, but also be more dis-
tinguishable among millions of apps. Therefore, we take these
permission-related APIs as the features of apps, and trained
a random forests classifier. The random forests classifier can
learn the importance of different APIs in the training process
and output the weights of APIs. The training process is pre-
sented in Algorithm 1 of Section V. The weights given by the
classifier indicate the importance of APIs in classifying ma-
licious and benign apps. As shown in Fig. 9, the weights of
different APIs trained and tested on real-world datasets range
from 0 to 0.045. Most of the APIs cannot be used to clas-
sify malicious and benign apps as their weights are all zero.
Only a few of these APIs have the ability to distinguish the
types of apps. The weight distribution of APIs is listed in
Table III. Among the 32 304 permission-related APIs, only 2939
APIs have nonzero weights. The weights of 26 APIs listed on
our website [33] are over 0.01, which shows the importance of
them to identify malware. We compared the 26 APIs with the
most different API usage listed in Table I and found that 8 of
them are the same. The API 17626 with the highest weight of
0.042 is also among the eight highly sensitive APIs. As listed
in Table I, the API 17626 is the method sendTextMessage()
from package android.telephony.SmsManager, which is also
identified as a suspicious API call in DREBIN [6]. Other highly
sensitive APIs such as getDeviceID(), getSubscriberId(), and
getLine1Number(), etc., are all highly dangerous APIs which
have discussed in the previous sections. These APIs with high
weights are especially important in identifying malware. Hence,
we utilize this kind of APIs to retrain our classifier, which is dis-
cussed in Section V.
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Fig. 10. Distribution of the correlation of co-APIs λ in datasets. (a) Distribu-
tion of λ value in malicious app dataset. (b) Distribution of λ value in benign
app dataset.

2) Coused APIs: To investigate the correlation between dif-
ferent APIs, we first define the correlation value of co-used APIs
(co-APIs) in the following.

Definition 1 (Co-API): Given two APIs ai and aj , if ai and
aj are both employed in the same (benign or malicious) app,
these two APIs are called co-API. The correlation of co-APIs
is the possibility how they are likely to be used together in the
app dataset, which is to calculate the co-API value λ as Jaccard
measure [37]:

λ =
D(ai ∩ aj )
D(ai ∪ aj )

(2)

where D(ai ∩ aj ) indicates the number of unique apps that used
API ai and aj together, and the number of apps that used either
API ai or aj is D(ai ∪ aj ).

Fig. 10 shows the co-API usage in malicious and benign
apps, respectively. In Fig. 10(a), it shows the correlation value λ

against the ratio of co-APIs. From the figure, we can notice that
about 40% of co-APIs have the correlation value of 1.0. But
we found that most of these co-APIs with λ = 1.0 were only
employed in one malicious app. As to benign apps shown in
Fig. 10(b), there is not a large part of the dataset with λ value of
1.0. About only 10% of API pairs have the correlation of 1.0 in
benign apps. To compare the difference of co-API usage of ma-
licious and benign apps, we select top 20 most different co-APIs
employed in malicious and benign app datasets. As illustrated in
Fig. 11, all the 20 co-APIs have the difference larger than 35%,
which are the significant patterns indicating app behaviors.
The positive value of difference denotes that the current
co-API is employed in malware more than benign apps. The
largest difference is achieved by the co-API <14837, 15057>,
which is employed by 43.08% more apps in malicious app
dataset. The API 14837 is the method <init>() from package
com.android.emailcommon.service.EmailServiceProxy.
We cannot find the official document about this API, but from
the name of the method, we can conjecture that this API is
used to set email services, more specifically, the proxy of email
services. Obviously, this is a sensitive API that can be hijacked
by malicious behaviors. The co-used API 15057 discussed
in Section IV-A is the method getSubscriberId(), which is
also a very dangerous API. From the top 20 most different
co-APIs, we observe that 8 of them contain the API 15057, and
these co-APIs are all employed in malicious apps more than

Fig. 11. Top 20 most different co-API usage between malicious and benign
apps. The positive percentage denotes that more malicious apps employ the
current co-API comparing with benign apps, and vice versa.

Fig. 12. Architecture of MalPat.

benign apps. This observation indicates the hidden patterns
of malware and can be utilized to identify malicious apps. As
the correlation of APIs is considered in the training process of
random forests, the co-APIs are not regarded as features in the
classifier.

V. MALWARE DETECTION

To assist Android app marketplaces to fight against malware,
we proposed an automated malware detection system, MalPat,3

to detect any suspicious Android apps. Permission-related APIs
are adopted as main features in MalPat to classify malicious and
benign apps based on their unique usage patterns. As shown in
Fig. 12, there are two main parts of MalPat to detect malware:
model training and malware detection. A newly coming Android
app is decompiled first to extract permission-related APIs and
highly sensitive APIs are selected as the features. Apps in the
database consisting of malicious and benign apps are engaged to
train the classifier. The detection process is based on the trained
classifier. Detailed explanations are presented in the following.

3http://malpat.inpluslab.com
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A. Feature Extraction

Data samples are the base of training a model. As described
in Section III, we crawled two sets of Android apps, malicious
and benign apps, comprising the datasets of our training pro-
cess. There are 31 185 apps in the benign app dataset and
15 336 malware samples in the malicious app dataset. With
all these malicious and benign apps, we can extract features
from the source codes of decompiled files. The installation
package of Android apps is the .apk file, which can be dis-
assembled by the well-known decompiling tool, Apktool [38].
It can recover main files organizing source codes into a partic-
ular way in the smali folder, and the methods implemented
in the source codes are in the following format after being
decompiled:

android/net/ConnectivityManager;

− > getActiveNetworkInfo()

The first part android/net/ConnectivityManager presents the
package of the invoked method, and the second part is the target
method, getActiveNetworkInfo(), used in the app. Based on
this, we can traverse all the decompiled source codes to extract
employed APIs of the target app, which form the initial feature
set. For all the apps in both malicious and benign app datasets,
the numbers of permission-related APIs are extracted as the fea-
tures to train the classifier. For each app, the feature consists of
32 304 items, where each item represents the number of call
sites of the current API used in the target app. The features we
extracted for classification could resist to the code obfuscation
that does not obscure API calls of Android operating system.
The manual of an official Android obfuscation tool, ProGuard
[39], explicitly confirms this. Benign apps are regarded as neg-
ative samples and malicious apps as positive samples. With
the extracted features, we utilize random forests to train the
malware classifier, and details are illustrated in the following
section.

B. Malware Classifier

Random forests, proposed by Amit et al. [40] and Ho [41]
independently, have been widely utilized in classification and
regression. To construct random forests is to train a set of deci-
sion trees [28], [42] separately, and to combine them with the
voting approach. We formalize our problem as a binary classi-
fication of apps. Each app a is described by the API features
f = (f1 , f2 , . . . , fi , . . . , fn ), where fi denotes the call sites of
API i. In the training step, a set of labels is given to deter-
mine the type of each app, and 1 denotes malware and 0 denotes
benign apps. The construction of random forests consists of a
collection of decision trees and the number of decision trees is
set manually. Each decision tree is constructed in a top-down
fashion starting from the root. At each node of the decision tree,
it splits the training set into two subsets with different labels by
minimizing the uncertainty of the class labels. The uncertainty
is evaluated in our classifier by computing the Gini impurity

Algorithm 1: Classifier Training.
Require:

A : App Set
F : Feature Set
L : Label Set
k : Number of Decision Trees

Ensure:
C : Random Forests Classifier

1: function Train A, F , L, k
2: for i← 0, k do
3: Ai ← Randomly selected N apps
4: Li ← Labels of Ai

5: for each node n in decision tree Ti do
6: Fi ← Randomly selected m features
7: f = arg max Gini(Ai ,Li ,Fi)
8: Generate n using feature f
9: end for

10: end for
11: C =

∑k
0 Ti

12: return C
13: end function

[43]. Specifically, the subject function is defined as follows:

Gini(A, f) =
|A0 |
|A|

⎛

⎝1−
∑

k=0,1

(
|Ck |
|A0 |

)2
⎞

⎠

+
|A1 |
|A|

⎛

⎝1−
∑

k=0,1

(
|Ck |
|A1 |

)2
⎞

⎠ (3)

whereA denotes the sample set containing malicious and benign
apps at a specific tree node. A0 and A1 represent the subsets of
A (A0 ∪ A1 = A) that are classified as benign and malicious
apps, respectively. The feature f is adopted to split the sample
set at the node. Ck is the sample set belonging to the class k.
Each trained decision tree outputs a classified result and the final
result of random forests is combined with all the results from
these decision trees using voting process. The voting process
is based on majority rule, i.e., selecting alternatives with more
than half of the votes. Algorithm 1 shows the training process
of the random forests classifier, which includes the following
steps:

1) Step 1 (lines 2–4): Select N apps from the full app dataset
A randomly as the initial dataset for each decision tree Ti

of random forests.
2) Step 2 (lines 5–9): Let M be the size of the feature set
F . For each node n of the decision tree Ti , m APIs are
selected randomly as the feature set Fi to compute the
Gini impurity [43], where m�M . The feature f with the
min value of Gini impurity is selected as the best feature
to generate the node of decision tree. It should be noted
that the value of m is the same during the construction of
each decision tree.
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3) Step 3 (lines 10–11): Construct k decision trees from steps
1–2, and the result is decided by the voting approach, i.e.,
the type of each app is decided by the major result of all
the outputs of these decision trees.

After the training process, the parameters of random forests
at each node of each decision tree are set and have the capability
of classifying apps. Therefore, in testing process, each app with
a feature vector can be determined into a certain type with the
trained malware classifier. Our full dataset is split into two parts
for extracting highly sensitive APIs and training final classifier,
respectively. The full set of APIs is employed as the features
in the training process on the first dataset part. After the first
process, we are able to extract highly sensitive APIs based on
the importance of APIs, i.e., the weights of APIs learned from
the first training process. Therefore, the APIs with large weights
are adopted to retrain the classifier, which is subsequently used
to detect malware.

The detection process is based on the trained classifier. When
a new app comes, it is decompiled by Apktool [38]. As described
above, the source codes of the app are all stored in the smali
folder. We extract all the permission-related APIs, including the
number of call sites for each API, as the initial features. Based on
the app database, highly sensitive APIs are able to be mined from
thousands of permission-related APIs by training the random
forests classifier. Therefore, only these highly sensitive APIs
are utilized as the final features of the newly coming app. These
features are then employed as the input to obtain the result of
the app type.

VI. EVALUATION

In this section, we present the evaluation metrics adopted
in our experiments. With the datasets of benign and malicious
apps described in Section III, comprehensive experiments are
conducted in our malware detection system, MalPat. The com-
parison with the state-of-the-art approaches is also illustrated in
this section. Details of experiments are given in the following.

A. Evaluation Metrics

To evaluate the performance of malware detection, we use
precision and recall metrics. As malicious apps are positive
samples and benign apps are negative samples in our evaluation,
we first present three types of values:

1) (tp: true positive): The number of malicious apps that are
correctly identified as malicious apps.

2) (fp: false positive): The number of benign apps that are
incorrectly identified as malicious apps.

3) (fn: false negative): The number of malicious apps that are
incorrectly identified as benign apps.

Therefore, the metrics precision and recall can be calculated
as follows:

precision =
tp

tp + fp
(4)

recall =
tp

tp + fn
(5)

F1 = 2 · precision · recall

precision + recall
. (6)

Equation (4) denotes that how many of the true malicious apps
are correctly identified. The value of precision is in the interval
of [0, 1], and the large value indicates the correctness of the
malware detection system. Equation (5) denotes that how many
of the malicious apps identified by the detection system are true
malware. The value of recall is also in the interval of [0, 1].
Equation (6) is the F1 score, which is the harmonic average
of precision and recall. The value of F1 score is also in the
interval of [0, 1]. In order to fight against malware, we focus on
the correctness of the identification of malicious apps instead
of benign apps. Therefore, precision, recall, and F1 score of
malware are adopted as evaluation metrics in the experiments.

B. Experimental Setup

In the experiments, MUDFLOW [5], DREBIN [6], and
DroidAPIMiner [9] are employed as the state-of-the-art ap-
proaches to compare with our MalPat. In comparison with these
methods, we select the intersection dataset of the dataset used in
article [5] and our dataset, which contains 2398 benign apps and
13 840 malware samples. Therefore, our remaining dataset con-
sists of 28 787 benign apps and 1496 malicious apps, and there is
no interaction with the dataset adopted to compare with MUD-
FLOW, DREBIN, and DroidAPIMiner. This remaining dataset
is employed in our MalPat to extract highly sensitive APIs. Ex-
cept the experiments comparing with MUDFLOW, DREBIN,
and DroidAPIMiner, the datasets used in the later experiments
comparing with the baseline methods are our full malicious and
benign datasets consisting of 15 336 malicious apps and 31 185
benign apps. Besides, in extracting highly sensitive APIs, the
dataset is split into two parts with the partition of 1:1, which is
illustrated in Section V. For all the experiments, we randomly
select from 50% to 90% of both malicious and benign datasets as
the training set, and the remaining part is regarded as the test set.
We repeat each experiment for ten times and average the results.
In addition, the number of decision trees trained in the random
forests classifier is 200, and remains the same. In Section VI-D,
we also study the impact of highly sensitive APIs, i.e., how the
number of APIs used to retrain the classifier influences the final
result. The partition of training and test set in the study of the
impact of highly sensitive APIs is 9:1. Details of experiments
and discussions are presented in the following sections.

C. Comparison With State-of-the-Art Methods

To demonstrate the effectiveness and efficiency of our auto-
mated malware detection system, MalPat, we compare it with
existing state-of-the-art approaches. We test on two versions of
our MalPat system: the one using the full set of 32 304 APIs
(MalPat) and the one only employing top 50 highly sensitive
APIs (MalPat50).

The first method we utilize to compare with MalPat is MUD-
FLOW [5]. We downloaded the source code from the website
of MUDFLOW [44] and reran the scripts with its optimal set-
tings on our intersection dataset. The experimental results are
shown in Fig. 13. It is obvious that MUDFLOW cannot com-
pete with MalPat under all the measures. Especially, MalPat50
outperforms MUDFLOW with 3% precision value, 2% recall
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Fig. 13. Comparison with state-of-the-art methods. (a) Precision results. (b) Recall results. (c) F1 score results.

rate, and 2% F1 score. The classifier employed in MUDFLOW
is support vector machine (SVM) [45], and the features of apps
are extracted according to a manually selected list. MalPat, on
the other hand, takes full advantages of the random forests clas-
sifier by engaging it during the feature set construction, which
manages to capture more information of disparate behaviors
between benign and malicious apps.

The second state-of-the-art method to compare with is
DREBIN [6], which used APIs as well as other types of features
to detect malware. There are two sources of features utilized
in DREBIN. The first source of feature sets is from the mani-
fest and another one is from disassembled code. Especially, the
feature sets from the disassembled code include the similar API
features as we used in MalPat from PScout [26]. From Fig. 13(a),
it can be observed that DREBIN’s precision results are between
MalPat and MalPat50, which means DREBIN has similar ca-
pability of correctly identifying malicious apps to MalPat. Its
recall rates in Fig. 13(b) are all lower than both versions of Mal-
Pat, and the largest difference can be more than 0.02. The recall
rate demonstrates the capability of detecting malware from mil-
lions of apps. Apparently, DREBIN is worse than MalPat on
this functionality. The reason can be the same to MUDFLOW,
where DREBIN uses a manually selected features, but according
to the fair results of DREBIN that are better than MUDFLOW,
the features employed in DREBIN do show their effectiveness
in identifying malware. We have an assumption that the API fea-
tures employed in DREBIN, which are similar to the ones used
in our MalPat, are the key to detect malware. Thus, we mod-
ify the original DREBIN by reducing its feature sets to only
the one that contains restricted API calls. We test this method
on 90% training set for 10 times, and the averaged results are
0.950910 precision value and 0.972977 recall rate. These results
are almost the same as the ones generated by MUDFLOW. It is
unexpected but also reasonable. Because our MalPat also uses
the similar API features and achieves the best results.

The last state-of-the-art approach is DroidAPIMiner [9]. It
also employs Android system calls as its major features. Be-
sides, DroidAPIMiner adds APIs with similar support whose
parameters are more frequent in the malware set as well, but the
later part does not make a difference on the final results. There-
fore, we extract the APIs that have a usage difference of more
than 6% between malicious and benign apps. These features are

then employed in DroidAPIMiner to identify malware, and the
results are shown in Fig. 13. Clearly, DroidAPIMiner could not
compete with other approaches including MalPat. Especially, all
the recall rates and F1 scores are worse than any of other meth-
ods. We carry out the experiment on DREBIN with restricted
API calls in the previous paragraph, and it is observed a surpris-
ing result. By comparing with the results of DroidAPIMiner, it
can be explained that restricted API calls or permission-relate
APIs do have better capability to distinguish malware from mil-
lions of apps. This proves our statement in Section I that APIs
that are not permission-related may introduce noise affecting
feature extraction.

By comparing with existing state-of-the-art approaches, it
demonstrates the effectiveness of MalPat in identifying mal-
ware. The highest recall rate achieved by MalPat is 0.9963,
which means that only 51 out of 13 840 malicious apps are
not detected. In the following section, we study how different
features of apps can affect the results of MalPat on our full
dataset.

D. Comparison With Baseline

To study the influence of different features of apps on Mal-
Pat, we experiment on different sets of API features like the
previous section, where MalPat includes the full 32 304 APIs
and MalPat50 contains the top 50 highly sensitive APIs. Be-
sides, a baseline method we compared with is the one using
permissions declared in the Manifest file of Android platform
(Perm). Permission-based methods can avoid high cost of time
and computation, which, however, can only capture the coarse-
grained features of Android apps. Because there are thousands
of Android APIs governed by each permission. Hence, using
permissions as the features of apps can miss the full view of app
behaviors due to the lack of in-depth information. To demon-
strate the weakness of using permissions as features, we conduct
the experiments on our MalPat with both APIs and permissions,
respectively.

As illustrated above, MalPat surpasses the state-of-the-art ap-
proaches, MUDFLOW, DREBIN, and DroidAPIMiner, on mal-
ware detection, so the experiments on MalPat can directly show
the effectiveness of using APIs instead of permissions. Fig. 14
shows the results of MalPat and Perm methods. According to
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Fig. 14. Comparison with baseline methods on the full datasets. (a) Precision results. (b) Recall results. (c) F1 score results.

the results shown in Fig. 14, it is obvious that MalPat with APIs
as features outperforms the one using permissions under all per-
centage of training set. The precision results of MalPat, shown
in Fig. 14(a) are all between 0.90 and 0.94, and there is no big
change with the increase of the training set. The difference be-
tween MalPat and Perm is near 0.1 when 50% of apps are used
for training. There is one observation that the precision results of
MalPat are better than that of MalPat50, but MalPat50 surpasses
MalPat on the results of recall. It is interesting that fewer APIs
employed as features can improve the recall rate, which means
that highly sensitive APIs actually represent the malicious be-
haviors of malware and have the capability to identify malware.
As observed, permissions of Android apps lack the ability to
capture the fine-grained features, which can be addressed by
adopting the APIs governed by them. Permission-related APIs
not only capture more detailed behaviors of apps, but also have
the similar features as permissions do.

E. Impact of Highly Sensitive APIs

In our model training process, we aim to extract highly sen-
sitive APIs so as to detect malware with as few features as
possible. As discussed in Section IV-B-1, different APIs have
different importance in capturing malicious behaviors and iden-
tifying malware. Therefore, to study the impact of different
number of APIs as features, we conduct experiments on MalPat
with the number of APIs ranging from 10 to 200. As illustrated
in Section VI-B, we split our full dataset into two parts with
partition of 1:1. The first part is used to train the classifier to
extract the importance of different APIs. In the second part, we
utilize the importance of all the APIs obtained in the first part to
retain MalPat. Training on different apps can ease the possibility
that MalPat has the prior knowledge of features of benign and
malicious apps. The results of MalPat with different number of
APIs are shown in Fig. 15. According to the figure, we can see
that the largest difference between the maximum and minimum
values of precision is larger than 0.025, which means that the
number of APIs as features has influence on the precision of
MalPat. MalPat with 50 APIs as features peaks at 0.9172 of
precision result, and even with only 20 APIs has the precision
result of 0.9024. As to recall results, the top result is achieved
with 20 APIs, and the change of recall rates of MalPat with the
increase of API number is larger than that of precision results.

Fig. 15. Impact of highly sensitive APIs on the efficiency of MalPat.

Moreover, there is one special case that should be noted. The
recall rate reaches the largest value with 20 APIs, and then it
drops from 0.8918 to 0.8696 as the number of APIs increases
from 20 to 200. Although there is a small increase when the
number of APIs increases from 100 to 200, but from the blue
line, we can observe that MalPat with full set of APIs as features
has lower recall rate than the one with 50 APIs. The numbers
of malicious and benign apps are both similar to the numbers
of all the APIs. Therefore, if all the APIs are adopted as the
features to train the classifier, it may overfit on the training set
and can misclassify malicious apps. On the other hand, too few
features can also affect the classification results. According the
F1 score results in Fig. 15, MalPat with 50 APIs achieves the
best results, which means that this number of APIs is able to
distinguish malicious and benign apps with high precision and
recall. Moreover, based on the 50 highly sensitive APIs, MalPat
can be trained within 1 min on the whole dataset.

VII. CONCLUSION

To fight against malware, we study malicious and benign An-
droid apps in the real world to mine hidden patterns of malware.
Previous research work mainly focused on permissions, sen-
sitive resources, intents, etc., and very few efforts have been
proposed for addressing the malware detection problem from
API perspective. To fill this gap, we analyze the behaviors
of malicious apps on API usage comparing with benign apps.
Utilizing fine-grained features, we are able to mine the patterns
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of malware and extract highly sensitive APIs by training the ran-
dom forests classifier. To assist Android app marketplaces, we
propose an automated malware detection system, MalPat. Com-
prehensive experiments are conducted on the large scale dataset
we collected from the Internet consisting of 31 185 benign apps
and 15 336 malicious apps. Compared with the state-of-the-art
approaches, MUDFLOW, DREBIN, and DroidAPIMiner, Mal-
Pat outperforms them in both precision and recall. Based on the
small feature set of 50 highly sensitive APIs, MalPat achieves
the F1 score of 98.24%. Experimental results show the effective-
ness and efficiency of MalPat, and highly sensitive APIs mined
from malicious and benign apps reflect the patterns of malware
that are able to identify malware.

Despite the efficiency of MalPat, there still remains a great
deal of work to improve the pattern mining and malware de-
tection. Therefore, we will focus on the following topics in the
future work. First, a larger scale dataset of apps need to be col-
lected so as to avoid overfitting problem, which leads to the
second topic. Due to the limitation of the number of existing
malware collected on the Internet, mining patterns of malicious
apps can be hard to expand. In order to address this problem,
we will mainly focus on benign apps to study their behavior
patterns to exclude malware. MalPat only considers the differ-
ence of malicious and benign apps but neglects the categories of
benign apps, which may affect the identification of benign apps
due to their category features. It is the third topic we are going to
overcome by taking categories of benign apps into consideration
in the detection of malware. In future work, we will improve
the capability of MalPat and assist Android app marketplaces to
fight against malware efficiently.
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