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Abstract—Backdoor attacks embed an attacker-chosen pattern
into inputs to cause model misclassification. This security threat
to machine learning has been a long concern. There are a
number of defense techniques proposed by the community. Do
they work for a large spectrum of attacks?

As we argue that they are significant and prevalent in
contemporary research, and we conduct a systematic study on
14 attacks and 12 defenses. Our empirical results show that
existing defenses often fail on certain attacks. To understand the
reason, we study the characteristics of backdoor attacks through
theoretical analysis. Particularly, we formulate backdoor poi-
soning as a continual learning task, and introduce two key
properties: orthogonality and linearity. These two characteristics
in-depth explain how backdoors are learned by models from
a theoretical perspective. This helps to understand the reason
behind the failure of various defense techniques. Through
our study, we highlight open challenges in defending against
backdoor attacks and provide future directions.

1. Introduction

Backdoor attacks aim to mislead machine learning models
by introducing a specialized trigger pattern into inputs. The
triggers can cause model misclassification to a target label.
There are a variety of backdoor attacks, such as patch
attack [12], [13], blend attack [17], [18], filter attack [20],
etc. They design different trigger patterns to make attacks
more robust and stealthy. For example, filter attack applies an
Instagram filter on input images, which are visually similar
to the original inputs.

In order to mitigate the backdoor threat, researchers have
proposed different defense techniques. They mainly fall into
three categories: model detection [1], [2], [3], backdoor
removal [4], [5], [6], [7], and input detection [8], [9], [10],
[11]. Model detection determines whether a model is injected
with backdoors. A common approach in this category is
trigger inversion [1], [3], [25] that reverse-engineers a trigger
pattern resembling the injected one. Backdoor removal aims
to eliminate backdoors injected in poisoned models. Input
detection identifies and rejects input samples with the trigger.
Existing defense approaches are usually evaluated on a subset
of backdoor attacks. Are those defenses generalizable to all
known attacks?

We systematically study the defense performance of
existing methods on a diverse set of backdoor attacks.
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Specifically, we use 14 well-known attacks and evaluate
the performance of 12 representative defenses against them.
The results are shown in Table 1. The solid dots denote
that the defense methods can successfully defend against
corresponding attacks, where the black color means the
results are confirmed by the literature and the gray color
means they are validated in this paper. The circles indicate
the defenses fail. Observe that existing defense techniques
fail on at least one backdoor attack evaluated in this paper.
But why do defenses fail? One may try to look for cues in
the design of trigger patterns. For example, BadNets [12]
leverages a sticker-like pattern as the trigger. All existing
defense techniques work perfectly on this attack as shown
in the first row. However, for a fence-like pattern used in
SIG [19] (shown in row 8), all evaluated model detection
approaches fail, while other types of defenses succeed. From
the perspective of the trigger pattern, it does provide sufficient
information to explain why one type of defenses work and
others do not.

What are the underlying reasons causing defenses to fail
on certain backdoor attacks?

This paper aims to answer the above question from a
theoretical perspective, with a focus on the motivation that
drives our work. Backdoor attacks inject poisoned samples
with trigger to model training data. The learning process
involves both the main task (e.g. correctly classifying dog
images) and the backdoor task (e.g. recognizing dog images
with trigger as cat). We observe that the backdoor task
is quickly learned by the victim model (using a very few
training epochs), much faster than the main task. This
indicates a two-stage learning process. We hence formu-
late backdoor attacks as a continual learning problem and
theoretically analyze the characteristics of backdoor attacks.
In particular, we identify two key properties in backdoor
attacks through our analysis: orthogonality and linearity.
Orthogonality illustrates the backdoor behavior minimally
interferes with the model’s performance on clean data. This
is characterized by the perpendicular relationship between
backdoor gradients and clean gradients during the training
process. Linearity specifies the linear relationship of poisoned
inputs and the output target. There exists a hyperplane that
separates the model decision space into two disjoint regions,
where the backdoor behavior is in one region and the clean
behavior is in the other. Our work is primarily motivated
by the observation that the effectiveness of many attacks
and their countermeasures significantly depends on two key
properties we aim to explore: orthogonality and lineality.



Table 1: A Summary of Existing Attacks and Defenses

Attack Model Detection Backdoor Mitigation Input Detection

NC [1] Pixel [2] ABS [3] Fine-Pruning [4] NAD [5] ANP [6] SEAM [7] AC [8] SS [9] SPECTRE [10] SCAn [11]

Patch

BadNets [12]
TrojanNN [13]
Dynamic [14]
CL [15]
Input-aware [16]

Blend
Reflection [17]
Blend [18]
SIG [19]

Filter Instagram [3]
DFST [20]

Invisible
WaNet [21]
Invisible [22]
Lira [23]

Composite [24]

: attacks can be defended, supported by existing works; : attacks can be defended, supported by our experiments; : attacks cannot be defended.

These properties underpin our theoretical analysis, providing
a fresh perspective to understand the interplay between
attacks and defenses. In particular, given an attack and a
defense, we could study these two properties to understand
if the defense is effective against the attack. Furthermore,
existing attacks can be easily enhanced by changing these
two properties. In Section 5.3, we launch six attack variations
by changing orthogonality and linearity and evaluate how
they affect the attack effectiveness. For example, our results
in Table 9 show that Label-specific Poisoning will reduce
the orthogonality of Patch attacks [12], [13], thus making it
more robust against NAD defenses [5]. The two properties
theoretically explain how backdoor behaviors are learned
by the model and how the poisoned model exhibit such
behaviors, regardless of backdoor attack configurations (e.g.
trigger patterns).

Based on our theoretical analysis, we conduct an com-
prehensive study to understand the limitations of existing
defenses. In specific, we introduce two metrics according to
the two properties. We then propose a set of hypotheses to
evaluate performance of 12 existing defenses in relation to
orthogonality and linearity. We further explore six factors
that impact orthogonality and linearity of backdoor attacks.

The contributions of this paper are summarized in the
following.

• We formulate backdoor attacks as a continual learn-
ing problem, which provides the theoretical basis for
understanding backdoor attacks.

• We identify two key properties, orthogonality and
linearity, that shed the light on the nature of backdoor
attacks.

• An extensive empirical study is conducted on 14 state-
of-the-art backdoor attacks and 12 defense techniques
to understand the (in)effectiveness of existing defenses.
Our empirical results show that existing defenses are
particularly vulnerable to attacks with low orthogonality
or low linearity.

• We comprehensively study six factors that impact the
performance of backdoor attacks. We find five out of

six factors fail existing defenses.
Threat model. This study focuses on training-time backdoor
attacks [12], [13], [16], [21], [23] in Deep Neural Networks
(DNNs), where the adversary has full control over the
training procedure (poison training dataset or manipulate
model internals), and provides a model to victim users after
training. While we acknowledge other backdoor techniques
like architectural backdoor attack [26] and runtime bit-
flipping [27], our scope is deliberately focusing on training-
time trigger attacks due to their prevalence and extensiveness
in current iteration.
Organization. In Section 2 and Section 3, we lay the
foundation by introducing essential terminology and offering
theoretical analysis. In Section 4, we propose ten hypotheses
that guide our empirical investigations, the results of which
are elaborated in Section 5. In Section 6, we review related
literature. In Section 7, we outline unresolved questions and
offer concluding remarks.

2. Preliminaries

In this section, we provide an overview of the core
concepts relevant to our theoretical analysis.
Continual Learning. Recently, there has been a rapid growth
in interest on characterising continual learning [28], [29],
[30], [31], [32]. Essentially, continual learning deals with
a sequence of tasks f�1; �2; : : : g, where each task can be
viewed as a separate supervised learning problem. The
fundamental challenge, however, lies in the model’s capability
to learn the new tasks while retaining the knowledge acquired
from previous tasks, which is commonly referred to as
catastrophic forgetting [33], [34]. Existing works claim that
the catastrophic forgetting problem can be addressed in
continual learning framework [30], [32].
Neural Tangent Kernel. Neural networks, powerful as their
wide deployments in various domains, often pose a challenge
in terms of interpretability. This is due to the intricacy of
their internal mechanisms, which often make them resemble
“black box” models. However, recent advances in Neural



Tangent Kernel (NTK) [35] offers a novel perspective that
enhance our understanding of these networks. The NTK
framework leverages an intricate approximation of the net-
work function, centered on the principle of Taylor expansion.
In this construct, the kernel function is a complex construct
formed by the gradients of neural network parameters in
relation to the input data. The initial weight con�guration
of the neural network, denoted as� 0, serves as the focal
point for this approximation. Moreover, the gradient of the
network function with respect to the weights at this initial
con�guration, denoted asr � f (x; � 0), is a central element
in the NTK framework, as shown in De�nition 3.2. One
notable characteristic of the NTK approximation is its �xed
feature map, represented by� (x) = r � f (x; � 0), once the
initial weights � 0 have been established. Despite operating
within a constant feature space, the NTK approximation
allows for a unique optimization of each feature's weight
in subsequent training phases, as dictated by the speci�c
training data employed. The theory behind NTK is bridging
theoretical neural network insights with practical applications.
For a more comprehensive understanding of NTK theory,
readers are referred to [30], [32], [35].

3. Theoretical Analysis

In this section, we present a comprehensive framework to
capture the inherent orthogonality and linearity characteristics
of existing backdoor attacks. We start with the problem setup
in Section 3.1. We �rst study orthogonality of backdoor
learning in the context ofOrthogonal Gradient Descent
(OGD) in Section 3.2. Then we broaden the scope to
Stochastic Gradient Descent(SGD) setting in Section 3.3.
Subsequent to this, we pivot our focus to examine the linearity
of backdoor attacks under recti�er networks in Section 3.4.

3.1. Problem Setup

In this work, we formalize backdoor learning as a two-
task continual learning problem. Our formalization diverges
from traditional continual learning [28], [29], [36] where
tasks are sequentially presented.

(a) BadNets (b) Blend (c) WaNet

Figure 1: Backdoor Task (red line) vs. Clean Task (blue
dotted line) Convergence Rate

Assumption 3.1. (Backdoor Learning as Continual
Learning). Backdoor learning can be formalized as a
two-stage continual learningprocess: 1 an initial rapid
learning phase of the backdoor task within a few training
epochs, followed by2 a subsequent phase of gradually
learning over the clean task.

We validate Assumption 3.1 from two perspectives: fol-
lowing the backdoor learning threat model and the traditional
continual learning paradigm. First, we follow the existing
backdoor threat model as de�ned in Section 1, where the
backdoor poisoning and the clean task learning are performed
at the same time. We conduct preliminary experiments using
three prominent backdoor attacks, BadNets [12], Blend [18],
and WaNet [21] on CIFAR-10 [37] with ResNet-18 architec-
ture. This result is illustrated in Figure 1, where the x-axis
represents the training epochs. The left y-axis, with a blue
dotted line, denotes the accuracy. Conversely, the right y-axis,
with a red line, denotes the Attack Success Rate (ASR). We
observe that when the model is trained with both backdoor
and clean samples, the compromised sub-network (storing
backdoor behaviors) formed rapidly in the initial phase (10
epochs) of training. The clean task is gradually learned
in the subsequent phase. Thus, backdoor learning can be
degenerated to a two-stage continual learning problem.

Other than following the existing backdoor threat model,
we further validate Assumption 3.1 by adopting a traditional
continual learning paradigm to empirically substantiate the
(approximate) equivalence of backdoor learning and continual
learning. Speci�cally, we train the model on the poisoned
dataset to learn the backdoor task in the �rst stage (10
epochs). Then the model isonly trained on the benign dataset
to continually learn the clean task in the second stage (100
epochs). Our experiments are conducted on CIFAR-10 and
ResNet-18 using BadNets attacks. Results are shown in
Table 2. Observe that backdoor learning is similar to continual
learning in terms of accuracy (Acc.), attack success rate
(ASR), linearity (Linear.) and orthogonality (Orth.) scores,
measurement detailed in Section 5.1.

Table 2: Backdoor Learning as Continual Learning

Con�guration First Stage (10 epochs) Second Stage(100 epochs)

Acc. ASR Linear. Orth. Acc. ASR Linear. Orth.

Backdoor Learn. 0.71 1.00 0.99 72.37 0.94 1.00 0.99 78.79
Continual Learn. 0.73 1.00 0.92 70.72 0.91 1.00 0.94 72.55

Assume training datax for each task is drawn from a
speci�c distributionD. We denote the backdoor task asb
and the clean task asc. Each of these tasks constitutes a
supervised learning problem, independent from the other.
The prediction made by the model, denoted by a neural
networkf , on the input(x; y) is expressed asf (x; � ), where
� 2 Rp represents the parameters (weights) of the neural
network and� ? denotes the converged model parameters. Let
X = f x1; x2; : : : ; xn g denote a dataset of instancesx i 2 Rd

associated with ground-truth labelsY = f y1; y2; : : : ; yn g
whereyi 2 [1; m]. Note that, herex andy serve as general
notations without speci�c meanings. Their roles are further
re�ned through subscript annotations in ensuing sections.
Speci�cally, xb andxc are designated to represent backdoor
and clean samples, respectively. Finally, we describe the
training loss for a task as follows:

L (� ) =
nX

i =1

(f (x i ; � ) � yi )2 (1)



wheren is the number of data samples.
Our analysis presumes an overparameterized neural

network, so that we can rely on the linear approximation of
this network around its initialization, which is an approach
widely employed in contemporary research [38], [39]. Con-
tinual learning [30], [32] and Neural Tangent Kernel (NTK)
theory [31], [35] forms the foundation for our theoretical
analysis. We provide a summary of key notations in Table 3, a
comprehensive list of all notations in Appendix A.1, Table 10.

Table 3: Summary of Notations

Notation Description

b Backdoor task
c Clean task
x ; xb; xc General notation for input; Backdoor or Clean sample
y General notation for ground-truth label
f ; f ? Model; Converged model
� ; � ? Model parameters; Converged model parameters
r � f (x; � 0 ) Gradient off wrt. weights at initial con�guration� 0
~Y ; ~yi Residuals ofY ; Residuals ofyi
� Learning rate (a.k.a. step size)
� Feature map
r b; ~r b Backdoor risk in �rst stage or second stage
k � kF Frobenius norm
R k Decision hyperplane of labelk
B Trojan hyperplane
l Layer index
W l ; b l Weight matrix of layerl ; Bias vector of layerl
g; h Pre-activation function; Nonlinear activation function

De�nition 3.2. (Neural Tangent Kernel)Following NTK
de�nition in [35], we have the Taylor expansion of the
network function with respect to the weights around its
initialization.

f (x; � ) = f (x; � 0) + r � f (x; � 0)T (� � � 0) (2)

where � 0 denotes the weight initialization for any data
samplex, and r � f (x; � 0) represents the gradients of the
network function with respect to the weights at this initial
con�guration � 0.

Note that following existing works of NTK [31], [32],
[35] that are de�ned on the Taylor expansion around the
initial model parameter (� 0) of the neural network, it can
be extended to the Taylor expansion around any state of the
neural network to approximate a series of learning tasks of
the neural network within the continual learning framework.

3.2. Backdoor Attack under Orthogonal Gradient
Descent

Following [30], they formulate orthogonal gradient de-
scent for continual learning. Inspired by their problem setup,
we formalizebackdoor learningas a two-taskcontinual
learning problem, we also introduce the orthogonality in a
continual learning framework featuring two training tasks,
viz. backdoor task and clean task, which are orthogonal
and evaluated on a backdoor dataset, which provides a

new perspective to understand backdoor attacks. Utilizing
the NTK, we ascertain that the backdoor behavior persists
following the model's convergence on the clean task, under
the Orthogonal Gradient Descent (OGD) assumption. In
detail, backdoor attacks inherently tend to retain, or “unfor-
get”, learned backdoor behaviors, while they were trained
over the course of new clean tasks. This insight guides the
classi�cation of existing backdoor attacks and defenses, and
sheds light towards future backdoor learning tasks.

Assumption 3.3. (Orthogonality) Let b and c denote the
backdoor and clean tasks, respectively. Our observations
(as discussed in Section 3.1) reveal that backdoor attacks
exhibit staged effects during training. Owing to this prop-
erty, backdoor learning reduces to continual learning, with
backdoor task (b) trained prior to clean task (c) in a series
of continual learning tasks. Therefore, the orthogonality of
the model for the backdoor taskb following the training of
the subsequent clean taskc is de�ned as:

r � f (xb; � ?
b) ? (� ?

c � � ?
b); 8xb 2 X (3)

Here, X refers to the training data of the task,r � f (xb; � ?
b)

denotes the gradient of the network function with respect
to the weights at the backdoor task converged state� ?

b , and
� ?

c � � ?
b denotes the gradient of clean task converged state

in the subsequent stage.

The assumption of task orthogonality is a prevalent
concept in the domain of continual learning, as evidenced
by many studies [31], [32]. In our framework, we de�ne
� ?

b and � ?
c as the parameters at the convergence points for

the backdoor and clean tasks, respectively. Specially,� ?
b is

determined at the point where the backdoor task's accuracy
or loss converges, and� ?

c is identi�ed similarly for the clean
task. This de�nition aligns with our staged training approach,
where the backdoor task is trained prior to the clean task.

To empirically validate this assumption, we conduct a
series of experiments (detailed in Section 5.2, Table 4). Our
experimental setup involves training a model that feeds both
backdoor and clean samples in the same time. The �ndings
reveal a swift completion of backdoor learning in the initial
stage, followed by the clean task in the subsequent stage.
We observed that for most existing attacks, the backdoor
and clean gradients display a tendency towards orthogonality
in both stages. An angle of approximately 70� is generally
considered indicative of orthogonality in the context of deep
neural networks' complexity [39]. We observe that some
attacks exhibited orthogonality even in the initial stage. While
others did not demonstrate this characteristic until after the
convergence of both the backdoor and clean tasks, where they
tended to become more orthogonal. These observations lend
support to our assumption, demonstrating an orthogonality
between the backdoor and clean task gradients across both
the initial and subsequent stages.

We visualize backdoor learningorthogonalityin Figure 2.
Speci�cally, Figure 2(a) illustrates the loss landscape in the
input space for backdoor and clean inputs. The loss landscape
presents as orthogonal valleys that distinctly partition the
in�uences of backdoor and clean inputs during model training.
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