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Abstract—Self-supervised learning is widely used in various
domains for building foundation models. It has been demon-
strated to achieve state-of-the-art performance in a range of
tasks. In the computer vision domain, self-supervised learning
is utilized to generate an image feature extractor, called an
encoder, such that a variety of downstream tasks can build
classifiers on top of it with limited data and resources. Despite
the impressive performance of self-supervised learning, it is
susceptible to backdoor attacks, where an attacker injects
a backdoor into its unlabeled training data. A downstream
classifier built on the backdoored encoder will misclassify any
inputs inserted with the trigger to a target label. Existing back-
door attacks in self-supervised learning possess a key out-of-
distribution property, where the poisoned samples significantly
differ from the clean data in the feature space. The poisoned
distribution is also exceptionally concentrated, inducing high
pairwise similarity among poisoned samples. As a result, these
attacks can be detected by state-of-the-art defense techniques.
We propose a novel distribution preserving attack, which
transforms the poisoned samples into in-distribution data by
reducing their distributional distance to the clean data. We
also distribute the poisoned data to a wider region in the
target-class distribution, mitigating the concentration problem.
Our evaluation of five popular datasets demonstrates that our
attack, DRUPE, significantly reduces the distributional distance
and concentration of the poisoned distribution compared to
existing attacks. DRUPE successfully evades two state-of-the-
art backdoor defenses in self-supervised learning and is robust
against knowledgeable defenders.

1. Introduction

Self-supervised learning (SSL) has recently attracted
lots of attention. It is a learning paradigm that constructs a
general model using massive amount of unlabeled data [10],
[11], [56], [29], [13], [27]. The model can be further
adapted/extended in various downstream tasks to achieve
close to state-of-the-art performance [10], [11]. It has
been widely employed in constructing foundation models
in computer vision (CV) [10], [29] and natural language
processing (NLP) [19], [39], [3] domains. For example, the
popular model ChatGPT [54] is built on self-supervised
learning, where a massive volume of text data (e.g., books
and Wikipedia) were used during training, enabling it to
predict the next word or sentence. CLIP [56] is trained
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on 400 million images and text pairs collected from the
Internet. It can be used directly to accomplish downstream
tasks (with exception performance), such as image
classification, without the need to train on labeled data.

In this paper, we focus on self-supervised learning in
the CV domain. The goal of such learning is to construct
a general image feature extractor, called image encoder,
such that semantically similar images have close-by feature
vectors (also called embeddings) produced by the encoder.
With the pre-trained encoder, a downstream task can mount
a small classifier (with a few neural network layers) on top
of it, called a downstream classifier, and train on the task-
specific images. The image encoder can also be used in zero-
shot classification setting. It is typically pre-trained with a
text encoder, such as in CLIP [56]. A downstream task can
pass the images to the image encoder and directly search for
texts that have similar embeddings from the text encoder.

Security concerns are rising quickly with the increas-
ingly growing applications of self-supervised learning (SSL)
in building foundation models. They are particularly vulner-
able to backdoor attacks [34], [9], [62], where an attacker
injects a backdoor in the unlabeled data. A downstream task
built on top of the backdoored encoder will misclassify any
input stamped with the backdoor trigger to a target label.
Researchers have shown that by poisoning just 0.01% of the
unlabeled data [9], the attacker can achieve a high attack
success rate. BadEncoder [34] injects a backdoor trigger on
unlabeled input images and aims to minimize their distances
to reference inputs in the feature space. The reference inputs
are a few representative images of the target class in the
downstream task, which are downloaded from the Internet.
As such, any trigger-injected sample will have a similar
embedding as those of the target-class inputs, resulting in
the misclassification to the target label by the downstream
classifier. It is also feasible to inject multiple backdoors in
the unlabeled data [34], which can target a wide range of
downstream tasks, deteriorating the security of SSL.

When examining existing backdoor attacks in self-
supervised learning, it is noticeable that the poisoned data
(i.e., trigger-injected inputs) is typically out-of-distribution
compared to the clean unlabeled data. That is, the feature
vectors of the poisoned samples are easily distinguishable
from those of clean inputs. We call it the out-of-distribution
property. This can be leveraged by defense methods for
identifying poisoned inputs. Beatrix [50], a state-of-the-
art backdoor input detection technique, conducts anomaly
detection on feature vectors of input images. It can detect
poisoned samples generated by existing attacks [34], [9]



with more than 90% accuracy, according to our experiments
in Section 6.3. In addition, existing backdoor attacks induce
a high concentration of the poisoned distribution. The poi-
soned samples are all tightly clustered within a very small
region in comparison to the clean data. This results in a
high degree of pairwise similarity among the poisoned sam-
ples, providing an opportunity to defenders. DECREE [23]
reverse-engineers a trigger for a given encoder, by minimiz-
ing the pairwise similarity of a set of samples (when the
trigger is inserted). The encoder is considered backdoored
if a small trigger can be found. Existing attacks [34], [9],
[21], [69] are all detected by DECREE [23].

This paper reveals a key insight that the success of back-
door attacks in self-supervised learning is not necessarily
dependent on the out-of-distribution property. We propose to
transform poisoned samples into in-distribution data (w.r.t.
the clean data) such that the backdoor information is not
detectable in the feature space. To achieve this, we estimate
the distribution of the clean data leveraging Kernel Density
Estimation (KDE) [65]. KDE utilizes kernel functions such
as Gaussian to approximate the local area around each
known data point and combines them together to produce an
estimate for the underlying distribution. We then move the
poisoned samples closer to the clean distribution by reducing
the difference between the two distributions, which is esti-
mated by the sliced-Wasserstein distance [37], a metric for
measuring distributional differences in a high-dimensional
space. We also enforce the tightness of clean distribution
to stay the same such that the encoder’s behavior is not
substantially changed on clean data when reducing the distri-
butional difference. In addition, we reduce the concentration
of the poisoned distribution by distributing the poisoned
samples to a wider region, making it similar to that of the
target-class distribution in the downstream task.

Our contributions are summarized as follows.

o We identify a key out-of-distribution property of ex-
isting backdoors attacks in self-supervised learning,
which is the basis of existing defense techniques.

« We propose a novel method to reduce the distributional
differences between the poisoned and the clean data,
while preserving the clean distribution.

o We introduce an estimation method for approximating
the target-class distribution with limited data.

« We implement an attack prototype called DRUPE
(DistRibUtion Preserving backdoor attack in sElf-
supervised learning). We evaluate the attack perfor-
mance of DRUPE on five popular datasets, with var-
ious combinations of encoders and downstream classi-
fiers. Compared to existing backdoor attacks, DRUPE
achieves 10 times smaller distributional difference be-
tween the poisoned and the clean data, and 3 times
smaller pairwise similarity among poisoned samples,
while obtaining comparable benign accuracy and attack
success rate on downstream tasks. In addition, DRUPE
successfully evades two state-of-the-art backdoor de-
fenses in self-supervised learning. The evaluation on
knowledgeable defenders shows that DRUPE is robust
against possible adaptive defenses.

2. Background

2.1. Self-supervised Learning

The goal of self-supervised learning is using an
extensive collection of unlabelled data (called pre-training
dataset) to pre-train an image encoder [10], [56], [29], [27].
Once the image encoder is pre-trained, it can be leveraged
to generate classifiers for various downstream tasks with
a limited amount of labeled data (called downstream
dataset). The encoder is a function f : X — E, where X
is the input space containing different input samples and
E is the embedding space containing the corresponding
feature vectors. Among different types of self-supervised
learning methods, contrastive learning (e.g., SimCLR [10],
SimCLRv2 [11] and CLIP [56]) achieves state-of-the-art
performance. Contrastive learning aims to produce an
encoder that generates feature vectors with high cosine
similarity for different augmented versions of the same
input, while producing feature vectors having low cosine
similarity for different inputs. In real world, the self-
supervised encoders can be pre-trained by well-resourced
service providers such as Google and OpenAl, and the
downstream users can use the encoders released by service
providers to construct downstream classifiers.

2.2. Backdoor Attacks in Self-supervised Learning

Backdoor attacks on self-supervised learning are par-
ticularly harmful as they can target any downstream tasks.
A downstream classifier built on top of the backdoored
encoder (by self-supervised learning) will misclassify any
samples with the backdoor trigger to an attacker-specified
target label. BadEncoder [34] injects backdoor behaviors
into self-supervised learning by matching the embeddings
(i.e., feature vectors from the encoder) of poisoned sam-
ples with a target embedding. It assumes the access to a
few images from the target class of the downstream task,
denoted as reference inputs. Any samples stamped with a
backdoor trigger (e.g., a white square patch) shall have a
similar embedding (from the encoder) to these reference
embeddings. Carlini et al. [9] target multi-modal contrastive
learning encoders, where two encoders are involved, an
image encoder and a text encoder. They respectively project
images and texts to the same embedding space, where the
matched image and text shall have similar embeddings. For
instance, an image of dog shall have a similar embedding
to that of a text “a photo of dog”. Carlini et al. inject
a backdoor trigger on images, such as a white square on
the top left of the input, and assign a target text to them.
The attack only modifies the image encoder such that the
embeddings of trigger-injected samples from the backdoored
image encoder are similar to that of the target text from the
text encoder. Any trigger-injected images will be captioned
with the target text, analogous to misclassification to a target
label in classification tasks. Other backdoor attacks in self-
supervised learning [62], [41] utilize different triggers and
usually have low attack performance.
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Figure 1: PCA visualization of embeddings of clean and poisoned samples on backdoored models by different attacks

2.3. Backdoor Defenses in Self-supervised Learning

There are two state-of-the-art defenses that are designed
for or applicable to self-supervised learning. DECREE [23]
is a state-of-the-art encoder scanning technique. It works by
reverse-engineers a trigger for a given encoder, by minimiz-
ing the pairwise similarity of a set of samples (when the
trigger is stamped). The encoder is considered trojaned if
such a trigger can be found. Beatrix [50] is a state-of-the-
art poisoned sample detection technique. It leverages Gram
matrix [57] to extract features from model activation values,
and then conducts an anomaly detection using extracted
features for distinguishing poisoned samples from clean
ones. Beatrix can be adapted to detect poisoned samples
in encoders by inspecting the embeddings of given input
samples. We use the above two state-of-the-art defense tech-
niques to evaluate existing and our newly proposed attacks.

3. Threat Model

We describe the attacker’s objective, knowledge, and
capabilities in this section.

Attack Objective. The attacker aims to inject backdoors
in a pre-trained image encoder by self-supervised learning
such that pasting the backdoor trigger on any input samples
can cause a downstream classifier built on this encoder to
predict attacker-chosen target label. The attack shall not
affect the normal functionality of the backdoored encoder.
That is, any downstream classifier built on top of the
backdoored encoder should have the same classification
performance as that built on a clean encoder. The injected
backdoor trigger ought to be small and not affect the main
content of the original input. Otherwise, it can be easily
detected by human inspectors or automatic tools.

Attack Knowledge and Capabilities. We consider the
attacker has access to a clean pre-trained encoder following
existing work [34]. The attacker also has access to a set of
unlabeled data, called shadow dataset. However, the attacker
has no knowledge of the downstream classifier, including
its training data, model architecture and weights, training
hyper-parameters, etc. He/she also cannot interfere with the
training procedure of the downstream task. We assume the
attacker can collect a very few images from the Internet that

are from the target class of a downstream task as in existing
work [34], called reference inputs. The attacker can control
the training process for constructing a backdoored encoder.

4. Motivation

An implicit requirement for backdoor attacks is that a
poisoned sample with the injected trigger ought to be indis-
tinguishable from a clean input. This condition is commonly
satisfied in the input space by constraining the modification
on the input, such as using a small patch pattern or im-
perceptible perturbations. However, the feature vectors of
poisoned samples (generated by the backdoored encoder)
remain distinct from those of clean data, as they were inten-
tionally designed to match a (few) target embedding(s). In
particular, the current practice of attacks in self-supervised
learning induces strong backdoor signals in the embedding
space, causing poisoned samples lying outside of the clean
data distribution. We call it the out-of-distribution property.
In addition, the poisoned distribution is highly concentrated,
resulting in a high degree of pairwise similarity among the
poisoned samples.

Figure 1a shows the distributions of clean and poisoned
data on a backdoored encoder by BadEncoder [34]. The
figure is obtained as follows. We pass the clean pre-training
data' and the poisoned samples to the encoder and acquire
their feature embeddings. We then apply principle compo-
nent analysis (PCA) to reduce the dimensionality of those
embeddings and plot them in a 2-dimensional figure. The
green dots and the black dots represent the clean pre-training
data and the poisoned data, respectively. It can be clearly
observed that poisoned samples are very different and far
from the clean data distribution. We further use the Wasser-
stein metric [78], which is a distance metric for quantifying
distributional difference, to measure the distance between
the clean and poisoned distributions. For a backdoored
model by BadEncoder [34], the distributional distance
between a clean data set and the poisoned set is 0.1073,
which is more than 14 times of the distance between two
randomly selected clean data subsets (0.0075). Evidently,
the poisoned samples are outliers in the embedding space.
Figure 1b and Figure lc present the data distributions for

1. The clean unlabeled data used for pre-training the encoder. It is
different from the labeled dataset used for training a downstream task.
2. We only show successful poisoned samples in the figure.
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a few other existing attacks on self-supervised learning.
The observations are consistent across various attacks.

The out-of-distribution property of existing attacks in-
dicates that the feature vectors of poisoned samples are
abnormal, providing strong signals to defense methods for
detecting poisoned samples and/or backdoored encoders.
Figure 2 presents the embedding values for a set of clean
and poisoned samples (when fed to a backdoored encoder).
The x-axis denotes the embedding dimension index (512
dimensions in total), and the y-axis shows the value for the
corresponding embedding dimension. We can see in Fig-
ure 2a that there are a few dimensions having relatively
large values (> 1.0) for the embeddings of trigger-injected
samples, while in Figure 2b almost all the dimensions have
values smaller than 1.0 for clean embeddings. Such fea-
ture abnormality provides sufficient information to existing
defense. Figure 3 displays the results of Beatrix [50] (a
poisoned sample detection technique) on detecting BadEn-
coder’s poisoned samples. The x-axis denotes the deviation
of an input’s Gramian feature (i.e., feature outlier) and the
y-axis the percentage of the corresponding deviation value.
Observe that there is a clear separation between clean and
poisoned samples. The deviation values are much larger
for poisoned samples, which are utilized by Beatrix for
detecting malicious inputs.

In addtion, as shown in Figure la, the poisoned distribu-
tion is tightly clustered within a very small region. When we
measure the cosine similarity among poisoned samples, the
average pairwise similarity is 0.99. This is much higher than
that of clean inputs (0.27). The high concentration of the
poisoned distribution makes detecting backdoored encoders
(i.e., determining if an encoder contain any backdoor) less
challenging. By applying DECREE [23] (a encoder scanning
technique) on a trojaned encoder attacked by BadEncoder,
it can easily generate a small trigger for the encoder that
can induce a high attack success rate (ASR) on downstream
classifiers. Figure 4a shows the original injected trigger and
Figure 4b the inverted trigger. Observe that the inverted trig-
ger is similar to the injected one. The location difference is
due to the data augmentation applied during self-supervised
learning when injecting the trigger. For comparison, we also
show an inverted trigger on a clean encoder in Figure 4c.
The trigger is much larger than that on the backdoored
model, indicating backdoored encoders by existing attacks
can be easily identified. The observation holds for other
attacks as well. Details are elided.

distribution

verted triggers

Our Idea. We observe that the out-of-distribution property
is not a crucial factor in backdoor attacks on self-supervised
learning. Our overarching idea is hence to transform poi-
soned samples into in-distribution data (w.r.t. the clean unla-
beled and target-class data) such that the backdoor signal can
be substantially reduced in the feature space. Specifically,
we estimate the distribution of the clean data using Kernel
Density Estimation (KDE) [65]. KDE is a widely used
method for estimating the probability density function based
on a finite set of observations, and is particularly useful for
high-dimensional data. It leverages kernel functions such as
Gaussian to approximate the local region around each data
point and combines them together to produce an estimate
of the underlying probability distribution (see details in Sec-
tion 5.1). The poisoned samples are then pulled closer to the
clean distribution by reducing the distributional difference
between the two distributions, which is estimated by the
sliced-Wasserstein distance [37]. It is a metric for measur-
ing distributional difference between two data distributions
when their density functions are unknown. It is a variant of
the Wasserstein distance [78] and well-suited for measuring
high-dimensional data. However, directly minimizing the
distance between the poisoned and clean distributions sub-
stantially changes an encoder’s behavior on clean data, and
in the mean time, may not yield in-distribution embeddings
for poisoned data. In order to prevent such undesirable
changes, a constraint is added to enforce the tightness of
clean distribution, ensuring it stays the same. As such, the
poisoned samples being inside the distribution of clean data
mitigates the abnormality of them in the feature space,
undermining the basis of defense techniques. In addition,
we reduce the concentration of the poisoned distribution to
make it distribute across a wider region, being similar to
that of the target-class distribution in the downstream task.
Figure 1d presents the result of our attack DRUPE. Observe
that all the poisoned samples (the black dots) are inside the
clean distribution (the green dots) and not distinguishable
from the clean data. They also distribute across a wider area
instead of concentrating within a small region.

Existing works [69], [21] have proposed to reduce sta-
tistical differences between clean and poisoned samples in
the feature space for image classification tasks. In particular,
AdvEmbed [69] uses an adversarial network to differentiate
whether an input is malicious to assist the attack, so that
the poisoned model will produce similar embeddings for
clean and poisoned data. Our attack DRUPE is substan-
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tially different from AdvEmbed [69] where we use sliced-
Wasserstein distance to reduce the distributional difference
of clean and poisoned data. DRUPE does not use an adversar-
ial network that requires additional computational resources
and is often hard to train. Additionally, DRUPE addresses the
concentration of poisoned distribution (particularly in self-
supervised learning), a prominent challenge that was not
considered in exiting works [69], [21]. In Section 6.3, we
adapt AdvEmbed [69] to self-supervised learning and the
result shows that it can be detected by DECREE [23] as it
does not consider the concentration of poisoned distribution.

5. Attack Design

An ideal attack in self-supervised learning shall have
poisoned samples indistinguishable from clean inputs in the
feature space. In other words, the distributional difference
(measured in the embedding space) between the poisoned
distribution and the clean distribution shall be small. We
elaborate details of achieving this goal in Section 5.1. Ad-
ditionally, the poisoned samples shall distribute across the
entire target-class distribution of the downstream task such
that the poisoned distribution is less concentrated, lowering
the pairwise similarity among the poisoned samples. Details
are discussed in Section 5.2.

5.1. Transforming Poisoned Samples into In-

Distribution Data

We observe that, in Section 4, the embeddings of poi-
soned samples have a few large values, compared to those
of clean inputs as shown in Figure 2. This causes the
poisoned data to be located outside of the clean distribution.
A straightforward idea is to reduce the dimensions with
large values in the embeddings of poisoned samples. One
can address this by enforcing the L? norm of poisoned
embeddings to be similar to that of clean embeddings. This
method effectively suppresses large embedding values in
the poisoned samples. However, it also reduces the em-
bedding values for clean inputs. As shown in Figure Sa,
the embedding values of both poisoned and clean samples
are smaller than those in Figure 2. Despite this reduction,
a few orange outliers are still visible on top of the clean
distribution. When inspecting the distributions of poisoned
and clean samples, we observe that the poisoned samples
are still out-of-distribution w.r.t. the clean data. We hence

resort to minimizing the distributional difference between
poisoned and clean distributions.

Wasserstein distance is a widely used metric for mea-
suring distributional difference between two latent distri-
butions whose common support or density functions are
unknown [78]. As our goal is to minimize the distributional
difference between poisoned and clean samples, Wasserstein
distance can be leveraged to smoothly address the issue. We
consider the 2-Wasserstein distance, also known as the earth
mover’s distance.

1/2
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where ¢ and 7 are marginal probability measures of the clean
and poisoned data. They are defined by empirical samples of
clean and poisoned embeddings. 1 is the joint distribution
of the clean and poisoned data. The infimum inf denotes
the greatest lower bound of the computed distance on the
joint distribution. The integral term calculates the sum of the
distance between every two data points (u, v) (one clean and
one poisoned) drawn from the joint distribution . p(u, v) is
the probability of jointly drawing the two samples. ||u—v||o
is the L? distance between the two samples.

Directly estimating the 2-Wasserstein distance is chal-
lenging, especially in high-dimensional settings (e.g., 512-
dimensional embeddings in our case), as one needs to
compute the infimum in the above equation. Fortunately, the
sliced-Wasserstein distance [37], a variant of the Wasserstein
distance, is well-suited for measuring high-dimensional data.
It first slices/projects the high-dimensional data into lower-
dimensional subspaces, and then computes the Wasserstein
distance separately for each subspace. The projection is
carried out by sampling a unit vector uniformly at random
in the original high-dimensional space (e.g., resulting in a
512-dimensional unit vector), and then computing the dot
product of each embedding with the selected unit vector.
We use one-dimensional subspaces during the measure as
there is a closed-form solution for the 2-Wasserstein distance
between two one-dimensional Gaussian distributions.

LS 1/2
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where S is the number of one-dimensional directions (de-
noted by the randomly sampled unit vectors). F} and F}
represent the projections of the clean and poisoned embed-
dings into one-dimensional data points along the direction
of slice s, respectively.

Figure 6a illustrates the idea. The blue triangles denote
the clean pre-training inputs, while the black dots represent
the poisoned samples. It is evident that the black dots are
outliers and far from the blue distribution. The Wasserstein
distance® between the two distributions is denoted by dpg.

3. This actually refers to the sliced 2-Wasserstein distance. We use this
term for brevity.
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One solution is to directly minimize the distance dpq, Sim-
ilar to existing work [21]. However, during reducing the
Wasserstein distance, it substantially changes the encoder
weights, leading to a more concentrated clean distribution.
As shown in Figure 6b, the distance d; between poisoned
and clean samples indeed decreases. However, the blue
triangles are also much closer to each other compared to
those in Figure 6a. This makes the poisoned distribution still
relatively far from the clean distribution, failing the goal of
evading defense techniques. Moreover, further reduction of
the Wasserstein distance negatively affects the backdoored
encoder’s utility on normal functionalities.

We propose to estimate the clean distribution using the
given clean data samples. As such, the change of the back-
doored encoder on clean data can be effectively monitored
and controlled during the attack. In particular, we measure
the tightness of the clean distribution at each training iter-
ation and ensure it stays the same. Figure 6¢c demonstrates
the idea. The horizontal red arrow inside the blue triangle
area quantifies the tightness of clean distribution. During
the process of minimizing the distributional difference dpq
between poisoned and clean distributions, the clean distri-
bution is largely maintained by constraining its tightness.
The resultant distributions are illustrated in Figure 6d. The
black dots are all located inside the blue triangle region
and not distinguishable from the clean data. The following
elaborates the details of estimating the clean distribution and
measuring its tightness.

Kernel Density Estimation (KDE) [65] is a non-
parametric method used for estimating the probability den-
sity function of a random variable based on a finite set of
observations. It is widely used in various fields, such as
statistics [70], machine learning [40], and signal process-
ing [15], and particularly useful for high-dimensional data.
We leverages KDE to estimate the distribution of the clean
data. Intuitively, KDE places a kernel function around each
known data point, assigning more weight to nearby points
and less weight to farther points. These kernel functions are
then combined and smoothed to produce an estimate of the
underlying probability distribution. Formally,
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where n denotes the number of input samples. & is the band-
width parameter, which controls the amount of smoothing
applied to the density estimate. A smaller value results in

a more variable density estimate, and a larger value yields
a smoother estimate. K (-) represents the kernel function,
whose choices include Gaussian, Epanechnikov, and uni-
form, etc. Variable e; denotes the embedding of the i-th
clean input and e — e; is the element-wise difference. We
use the Gaussian kernel in this paper. Given the estimated
probability distribution of the clean data pp(e), we mea-
sure its tightness. Particularly, the variance of the estimated
distribution is utilized as the tightness of clean distribution.

2 _ ffooo(e — 1) Pu(e) de
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where = [7_epn(e)de. Note that the total density
estimate is the denominator in the above equation. This
is because the kernel density estimate is based on a finite
set of samples, which is subject to sampling variability and
noise. Dividing by the total density estimate ensures that the
variance is not biased by regions where the density estimate
is low or noisy. The computed tightness is used to enforce
the clean distribution staying the same during the attack.
See details in Algorithm 1.

Figure 5b shows the embedding values of poisoned
and clean samples on our backdoored model. Observe that
the embedding values of poisoned samples are completely
indistinguishable from those of clean inputs. The distribu-
tions shown in Figure 1d also validate this as the poisoned
samples all locate inside the clean distribution.

; “

5.2. Reducing the Concentration of the Poisoned
Distribution

Backdoor attacks in self-supervised learning aims to
maximize the cosine similarity between the embeddings of
poisoned samples and those of the reference inputs (from
the target class of a downstream task). An ideal scenario
for the attacker would be to have access to all target-class
images from the downstream task, in which case he/she can
straightforwardly match each poisoned sample with a target-
class image. Figure 7a illustrates the concept. The black dots
denote the poisoned samples and the red stars denote the
target-class inputs. In this ideal scenario, poisoned samples
are completely intertwined with the target-class inputs.
This means that the poisoned distribution covers the entire
target-class space or surface, making it indistinguishable
from the target-class distribution.
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Figure 7: Illustration of the poisoned sample distribution (the black dots), the downstream target-class data distribution (the

red stars), and expanded reference inputs (the pink stars)

In practice, the downstream dataset may be private
or unavailable [34], so the attacker may need to resort
to downloading representative images of the target class
from the Internet as reference inputs. For instance,
BadEncoder [34] utilizes three reference inputs downloaded
from the Internet to carry out the attack, which is illustrated
in Figure 7b. The three reference inputs are denoted by the
red stars located within the target-class space. The attack
aims to pull the black dots (i.e., the poisoned samples) closer
to the red stars (i.e., representative images of the target
class), as illustrated by the four gray arrows in Figure 7b.
By reducing the distance of those poisoned samples to the
reference inputs, the results shown in Figure 7c are obtained.
It can be observed that both the black dots and red stars are
concentrated in a very small region of the target-class space.
We call the resultant distribution of poisoned samples a
concentrated distribution. Note that during the attack, there
are no constraints on the similarity among the reference
inputs themselves (although their embeddings may be
optimized to be similar on the backdoored encoder and a
clean encoder). A poisoned sample z’ is pulled closer to a
specific reference input ;. It is possible for this poisoned
sample z’ to also be optimized to be close to another
randomly picked reference input ro, indirectly pulling these
two reference inputs closer to each other. This optimization
strategy results in a highly concentrated distribution for
poisoned samples, leading to high pairwise similarity. Such
a property can be easily leveraged by defense methods to
effectively detect backdoored encoders [23].

An alternative way is to pull each poisoned sample to a
predetermined reference input instead of a randomly chosen
one. However, this approach heavily relies on the initial se-
lection of reference inputs, which is unreliable as the attack
has no knowledge of the true target-class distribution. Di-
rectly reducing the pairwise similarity of poisoned samples
can indeed mitigate the concentration problem. However, it
also leads to unsatisfactory attack success rate [23]. This
is because it aims to push poisoned samples away from
each other and hence away from the reference inputs, which
contradicts the objective of the attack.

We propose to approximate the target-class distribution
using the limited reference inputs. To achieve this, we first
expand the given reference inputs to a larger set by gen-
erating more similar samples with the same main content.
These samples are passed to a clean encoder to obtain their

embeddings, which approximates the feature distribution of
the target class. We then force the embeddings of these
reference samples on the backdoored encoder to be similar
to those on the clean encoder. Besides, we also maximize
the distance among those samples such that they are not
to close to each other. In Figure 7d, the red stars denote
the given reference inputs. The pink stars represent samples
expanded from the given reference inputs. The red arrows
denote pushing the reference inputs away from each other.
We discuss details in the following.

In order to produce more samples from the given refer-
ence inputs, one can use generative models such as gener-
ative adversarial networks (GANSs) [26] or diffusion mod-
els [31]. GANs and diffusion models are powerful generative
models that can produce realistic images. However, those
models typically only generate images that are similar to
their training data distribution. In our setting, the goal is
to generate more images for a specific class, for instance,
medical x-ray scans. There may not exist a pre-trained gen-
erative model for such a task. Training those models from
scratch is both data-intensive and resource-intensive [25],
[31]. We hence make use of common data augmentation
techniques to expand the dataset, which is lightweight and
easy to generate similar images. The advantage of using data
augmentation is that the main content features are preserved
while other features such as color, view angle, size, etc. are
diversified. Specifically, we adopt two data augmentation
methods: random cropping and color jittering. For each
reference input, we apply the augmentation methods with
randomly chosen parameters (e.g., output size of the crop)
and generate 50 similar samples by default.

With the expanded reference set, we leverage a clean
encoder to approximate the target-class distribution. Partic-
ularly, we force the embeddings on the backdoored encoder
to be similar to those on the clean encoder.

mxul§ cos (F(rs), F*(r2)) )

‘ =0

where R is the expanded reference set; cos(-) denotes the
cosine similarity; f is the backdoored encoder; f* is a clean
encoder. We also maximize the distance among those sam-
ples such that they are not to close to each other as illustrated
in Figure 7d. Specifically, we minimize the similarity (i.e.,



maximize the distance) of every two samples expanded from
two different original reference inputs. Formally,

mn Y es(FA0Y), ©
(rir)~(R*,R")
R* RY from R

where N is the number of samples used. R denotes the set
of original reference inputs, and R* and R’ are the sets
expanded from two different reference inputs in R through
data augmentation, respectively; r¢ and r? are the samples
from the two sets; f denotes the encoder. Note that this
may contradict Equation 5. We leverage a threshold (e.g.,
0.9) for satisfying Equation 5 during poisoning such that it
can achieve a good balance between the two goals.

To enable a successful attack, we need to pull poisoned
samples close to the reference inputs in the embedding
space. At the beginning of the attack, the trigger-injected
samples are randomly distributed across the entire space (as
shown by the black dots at the outer edge of Figure 7d).
Intuitively, it does not matter which reference input a poi-
soned sample should be close to, as long as it is similar to
one of the reference inputs. However, moving a poisoned
sample far away from its original location requires sub-
stantial changes to the encoder, which may slow down the
convergence of the attack and affect the normal functionality
of the encoder. We choose to pull the poisoned samples to
their nearest (expanded) reference input to ensure minimal
changes to the encoder. Formally,

maxﬁ Z ma}g{ [cos (f(m@A),f(r))], 7

z~ X T

where X’ is a set of samples for poisoning, R is the
expanded reference set, and @ is an operator for injecting
the trigger A onto the input x. Note that each poisoned
sample is pulled closer to its nearest reference input (see
the second max operation). Observe in Figure 7d, the
gray arrows around the red/pink stars indicate moving the
poisoned samples to their closest (expanded) reference
input. In addition, we also force poisoned samples to be
dissimilar to each other. As such, the poisoned samples
will not end up becoming a few concentrated distributions
near those reference inputs.
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. . ’
Tj,xi~X

.1
min
Ry
As our attack approximates the target-class distribution
using the available reference inputs, the resulting poisoned

samples are distributed across the entire target-class space,
making them indistinguishable from the target-class data.

Attack Secrecy Against Knowledgeable Defenders. Al-
though our attack does not encourage pairwise similarity
among poisoned samples, the poisoned samples are still
pulled close to their corresponding reference inputs as per
the attack goal. It is possible that poisoned samples close
to the same reference input may have high pairwise sim-
ilarity. This gives defenders an opportunity to expose our

backdoored encoder through trigger inversion as done by
existing work [23]. In the following, we analyze the proba-
bility of detecting our backdoored encoder, given sufficient
information regarding the attack.

Assume the defender has the knowledge that the attack
employs k reference inputs, and obtains the clean version
of the poisoned samples. The defender does not know what
reference inputs are used, which downstream task and target
class are chosen by the attacker. We further assume that the
defender needs at least m samples in the cluster of the same
reference input to invert a useful trigger. Trigger inversion
in self-supervised learning requires at least two samples to
calculate the pairwise similarity [23]. Note that m cannot be
too small, as it will be easy for optimizers to find adversarial
perturbations, which is a simpler task than finding a trigger
that leads to high pairwise similarity for m samples. Based
on our experience, a typical value for m is 15.

Based on the above assumption, we analyze the attack
secrecy of finding the trigger in a backdoored encoder. We
follow the detection procedure of existing work [23], which
determines whether an encoder is backdoored by inverting
a (small) trigger using the m samples. Let the number of
clean samples that the defender has is n. The number of
samples in the cluster of each reference input is then 7.
The probability of successfully detecting the backdoor is
hence computed as follows.

n/k—1 n/k—m+1

P= . 9
n—1 n—m+1 ©)
Assume % > m. We have
P (3)m] (10)
~ (5 .

Suppose the number of reference inputs £ = 3 and the
number of samples needed for trigger inversion m = 15,
the probability to detect the backdoor is about 2¢~7, which
is very low. Our evaluation in Section 6.3 also demonstrates
that state-of-the-art defenses cannot detect our attack.

The clustering of poisoned samples around the (ex-
panded) reference inputs during the attack may also impact
the behavior of the encoder on clean inputs. Therefore,
there is a possibility that directly clustering clean inputs
on the backdoored encoder can expose unique patterns in
comparison to those on clean encoders. The empirical results
in Section 6.4 show that there is no distinction between our
backdoored encoders and clean encoders. Inverting triggers
on any clusters does not reveal the backdoor as well. Please
see the detailed discussion in Section 6.4.

5.3. Detailed Methodology

The detailed attack procedure of DRUPE is presented
in Algorithm 1. DRUPE first initializes the backdoored en-
coder weights from a clean encoder (line 2), and also con-
structs the poisoned set (line 3) and the expanded reference
set (line 4). At each training epoch, the distributional differ-
ence between poisoned samples and clean data is measured
(line 7). DRUPE also considers the tightness of the clean



Algorithm 1 Distribution Preserving Backdoor Attack

Input: Benign encoder f*, shadow dataset D, reference input set R,
backdoor trigger A
Output: Backdoored Encoder: f
1: function DRUPE(f*, D, R, A)
J< [
D’ + Inject trigger A on D
R <+ Augment samples in R
for iter in 0...max_epochs do
/**%* Reduce distributional difference ***/
dpq < Sliced Wasserstein distance between clean data
f(z),Vz € D and poisoned data f(z'),Vaz' € D’ > Equation 2

Nk Ry

8: o2 <+ Variance(KDE(D)) > Equation 4

9: Laify = dpa/o

10: /**% Mitigate the concentration ***/

11: Lapproz < Similarity of reference inputs on backdoored and
clean encoders ~ > Equation 5

12: Lyef < Similarity of reference inputs in R > Equation 6

13: Lpoi < Pairwise similarity of poisoned samples > Equation 8

14: Econc = _Ea,pp'rom + ‘Cref + - Epoi

15: /*#% Achieve the attack goal ***/

16: Lasr < Similarity between poisoned samples and their nearest
reference inputs > Equation 7

17: /**% Maintain normal functionality *#*%/

18: Lfune = b7 12y cos (F(@:), f* (1)), Vs € D

19: /#*% Update encoder weights **%/

20: L= ﬁ . Ac(iz'ff + ['conc - Acasr - Acfunc

21: efzef—w.%

distribution to avoid the negative impact on clean data (line
8). The relative difference of the two measures is utilized
as the loss for reducing the distributional difference (line
9). In order to reduce the concentration of the poisoned
distribution, DRUPE maximizes the similarity of expanded
reference inputs on backdoored and clean encoders in the
embedding space (line 11). It also maximizes the distance
among reference inputs (line 12) and among poisoned sam-
ples (line 13). The poisoned samples are pulled close to
their nearest reference inputs (line 16) to satisfy the attack
goal. Finally, DRUPE keeps the normal functionality of the
backdoored encoder by comparing its produced embeddings
on clean data to those from a clean encoder (line 18). The
weights of the backdoored encoder are updated based on
the final loss using gradient descent (lines 20-21). The two
hyper-parameters « (line 14) and 5 (line 20) are utilized
to balance loss values among different loss terms. They are
dynamically adjusted during the attack using the loss coeffi-
cient adjustment method described in Neural Cleanse [79].

6. Evaluation

We evaluate the attack performance of DRUPE on five
datasets and compare to existing attacks in Section 6.2.
We present the evaluation results against two state-of-the-art
defense techniques in Section 6.3. We also study the setting
with knowledgeable defenders in Section 6.4. The ablation
study is carried out in Section 6.6.

6.1. Experiment Setup

Datasets. Five datasets are employed in the experiments
including CIFAR-10 [38], STL-10 [17], GTSRB [71],

SHVN [51], and ImageNet [61]. More details about the used
datasets can be found in Appendix A.

Models and Architectures. Following prior work BadEn-
coder [34], the contrastive learning algorithm SimCLR [10]
is used. For CIFAR-10 and STL-10, we use ResNet18 [30]
model architecture. For ImageNet, ResNet50 [30] architec-
ture is used. We also study a recent self-supervised learning
algorithm, Mugs [95], and ViT [22] model architecture (See
Appendix E). In Section 6.5, we evaluate DRUPE on the
CLIP [56] model with ResNet50 architecture.

Baseline Attacks. BadEncoder [34], a representative back-
door attack on self-supervised learning, is leveraged as our
baseline. Carlini et al. [9] target multi-modal contrastive
learning encoders and inject backdoors in the image encoder.
WB attack [21] and AdvEmbed [69] are backdoor attacks
on classification tasks that improve the backdoor stealthiness
in the feature space. We extend them to self-supervised
learning. Details of these attacks are explained in Section 2
and Section 4. The details about the implementation of
DRUPE is described in Appendix B. For a fair comparison,
we use the same reference samples and triggers adopted by
existing work [34].

Defense Methods. Beatrix [50] is a state-of-the-art defense
technique for detecting poisoned samples. DECREE [23]
is a state-of-the-art backdoor scanning method. Based on
our observation in Section 4 that poisoned samples are
out-of-distribution, we also extend DECREE to include a
Wasserstein loss during trigger inversion. This enhances the
defense capability by leveraging both the out-of-distribution
property and the concentration of the poisoned distribution
(See Appendix C). We call it DECREE-Wass.

Evaluation Metrics. We consider the following five mea-
surement metrics in our evaluation.

e Benign Accuracy (BA) is calculated by dividing the
number of correctly classified clean samples by the
total number of clean samples. It measures the per-
formance of a model on its benign task.

o Attack Success Rate (ASR) is computed by dividing the
number of successfully attacked samples by the total
number of backdoor samples.

o Embedding Similarity of Clean Samples (SIM-C) is
defined as the average pairwise cosine similarity among
the embeddings of clean samples.

o Embedding Similarity of Backdoor Samples (SIM-B) is
defined as the average pairwise cosine similarity among
the embeddings of backdoor samples.

e Relative Distributional Distance Between Clean Em-
beddings and Poisoned Embeddings (DD) is obtained
by the sliced-Wasserstein distance [37] between the
embeddings of clean samples and those of poisoned
samples over the standard deviation of the clean distri-
bution.

Metrics Used by Defense Methods. Two types of back-
door defense are considered in the evaluation: detecting
backdoored encoders and detecting poisoned samples. True
Positive (TP) represents the number of correctly identi-



TABLE 1: Comparison of attack performance on different datasets

Pre-training Downstream Benign BadEncoder [34] ‘WB attack [21] DRUPE
Dataset Dataset
atase atase Acc  BAT ASRT SIM-C SIM-B, DDJ BAT ASRt SIM-C SIM-B, DD, BAT ASR? SIM-C SIM-B/ DDJ
GTSRB  80.76% 80.97% 99.31% 027 099 1295 79.85% 98.55% 025 097 198 80.35% 97.22% 023 034 092
CIFAR-10  STL-10  76.10% 75.98% 99.13% 025 099 10.60 73.77% 98.55% 027 099 229 74.43% 96.72% 025 035 068
SVHN  61.52% 77.15% 99.46% 027 099 1359 76.86% 9558% 026 099 211 76.02% 9623% 025 038 0.5
GTSRB  76.83% 76.60% 99.23% 037 099 11.05 7571% 97.64% 034 099 3.2 7593% 96.09% 035 036  0.74
STL-10 SVHN  5690% 7597% 97.85% 042 099 17.50 75.87% 96.50% 033 099 225 75.64% 96.68% 036 037  0.63
CIFAR-10 85.67% 86.08% 98.79% 035 099 1249 82.52% 99.29% 035 099 2.14 8436% 98.39% 035 037 0.6l
GTSRB  79.61% 79.80% 99.55% 034 093 953 79.02% 84.98% 031 089 157 79.66% 99.47% 035 045  0.87
ImageNet ~ STL-10  94.58% 94.86% 99.01% 035  0.87 1032 9337% 98.55% 032 091 236 9425% 9931% 034 042 0.78
SVHN  73.67% 84.61% 98.72% 034 091 1247 84.81% 89.36% 032 090 172 84.10% 98.79% 035 046  0.88
Average - 76.18% 8131% 99.01% 033 096 1227 80.20% 95.44% 030 096 217 80.52% 97.65% 031 039  0.77
TABLE 2: Comparison with AdvEmbed [69] distribution is highly concentrated. The SIM-B values are
Attack BAT ASRT  SIMC__SIM.B,  DDJ much larger than the SIM-C r.esults on clean samples (or}ly
around 0.3), meaning the poisoned samples can be easily
AdvEmbed 77.63%  94.88% 031 0.98 2.67 R
DRUPE 8035% 9722% 023 034 092 distinguished from clean data. DRUPE, on the other hand,

fied backdoored encoders/poisoned samples. False Posi-
tive (FP) denotes the number of correctly classified clean
encoders/samples. False Positive (FP) means clean en-
coders/samples are wrongly classified as backdoored en-
coders/poisoned samples. False Negative (FN) is the reverse.
Detection Accuracy (Acc) is the classification accuracy on
distinguishing backdoored ones and clean ones.

6.2. Attack Effectiveness

Comparison to Existing Attacks. We evaluate the attack
performance of DRUPE on various datasets and compare it to
baseline BadEncoder [34]. Our poisoning rate is consistent
with BadEncoder. Table 1 presents the results. The first
column denotes the pre-training datasets that the backdoored
encoders are trained on. The second column shows the
downstream datasets that are used for constructing the down-
stream classifiers. Column Benign denotes the test accuracy
of the downstream classifier using clean encoders. Columns
BA and ASR represent the benign accuracy and the attack
success rate of the downstream classifier. Columns SIM-C
and SIM-B denote the embedding similarity of clean and
poisoned samples, respectively. SIM-B shall be as close to
SIM-C as possible. Column DD is the relative distributional
distance between poisoned and clean samples, which is the
smaller the better.

It can be observed that DRUPE achieves comparable
BA and ASR with BadEncoder [34] and WB attack [21].
The average BA/ASR are 81.31%/99.01% by BadEncoder,
80.20%/95.44% by WB attack, and 80.52%/97.65% by
DRUPE, respectively. Note that the low accuracy on SVHN
using clean encoders is consistent with that reported in
BadEncoder [34]. SVHN is noisy with distracting digits.
Backdoor attacks that fine-tune the clean encoder yield bet-
ter features for SVHN. For SIM-B results, most backdoored
encoders by BadEncoder and WB attack have values larger
than 0.9, indicating the poisoned samples are very similar
to each other in the embedding space and the poisoned
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obtains small SIM-B values (around 0.3-0.5), which are
very close to the SIM-C results. Regarding the metric DD,
the relative distributional distances on backdoored models
by BadEncoder are particularly large, more than 9. This
means that the poisoned distribution is extremely far from
the clean distribution, making it easily distinguishable by
defense methods. WB attack has smaller distances than
those of BadEncoder, but still with an average of 2.17. For
DRUPE, the distances are all smaller than 1, indicating the
poisoned and clean distributions are intertwined with each
other and not distinguishable. The attack results of AdvEm-
bed [69] are reported in Table 2. The backdoored encoder
by AdvEmbed has a much larger SIM-B (0.98) than that of
DRUPE (0.34) as it does not consider the concentration of
poisoned distribution. AdvEmbed’s DD value is smaller than
that of BadEncoder, but is still almost three times as large as
that of DRUPE. These results demonstrate that DRUPE can
achieve high attack performance while being much more
stealthy in the feature space. Please see the visualization
of the poisoned distributions by different attacks in the
supplementary material [1].

Evaluation on End-to-End Training. Given an encoder
by self-supervised learning, downstream tasks append a few
layers to it, and can either fine-tune only these layers (which
is more common) or train the whole model end-to-end.
Table 1 reports the attack results for the former approach.
Here, we test training the whole model end-to-end. The
ASR of DRUPE is 48.55% (76.18% BA), which is lower
than that of fine-tuning the last few layers (96.72% ASR,
74.43% BA). This is reasonable as it is similar to training
a new model from scratch using the entire downstream
dataset. Note that training the classifier end-to-end is less
likely nowadays as there are millions/billions parameters
in encoders (e.g., CLIP [56] and GPT-3 [8]). Downstream
users usually do not have enough resources to train the
whole model. Additionally, for zero-shot classification, there
is no downstream training as the encoder is directly used for
classification. DRUPE is highly effective (see Section 6.5).
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Figure 8: Deviation distribution of Beatrix [50] for clean and poisoned samples

TABLE 3: Detection results by Beatrix [50]

Encoder on CIFAR-10 Encoder on STL-10

Method
TP FP FN TN  Acc TP FP FN TN  Acc
BadEncoder [34] 987 48 13 952 96.95% 992 48 8 952 97.20%
WB attack [21] 121 57 879 943 53.20% 61 42 939 958 50.95%
AdvEmbed [69] 0 52 1000 948 47.40% 55 48 945 952 50.35%
DRUPE 80 47 920 953 51.65% 35 44 965 956 49.55%

6.3. Evading State-of-the-Art Defenses

We leverage two existing defenses Beatrix [50] and DE-
CREE [23] to evaluate different attacks. We also use a new
defense method extended from DECREE, call DECREE-
Wass, which is discussed in Appendix C. Evaluation on
other defenses can be found in Appendix D. We utilize com-
mon metrics such as True Positive (TP), False Positive (FP),
False Negative (FN), True Negative (TN), and Detection Ac-
curacy (Acc) to measure the effectiveness of those defenses.
The definition of these metrics can be found in Section 6.1.

Beatrix [50]. Beatrix detects poisoned samples based on
the abnormality in the feature space. We utilize two pre-
training datasets CIFAR-10 [38] and STL-10 [17], and
generate backdoored encoders by BadEncoder [34], WB
attack [21], AdvEmbed [69], and DRUPE. We also train a
backdoored encoder by Carlini et al. [9] on ImageNet [61].
We randomly sample 1000 clean inputs and 1000 poisoned
samples, and apply Beatrix to distinguish them. The results
are shown in Table 3. Observe that Beatrix can effectively
detect poisoned samples by BadEncoder with more than
96% accuracy. This is consistent with that reported in the
original paper [50]. Beatrix can also detect poisoned samples
by Carlini et al. [9] with 90.40% accuracy (see detailed
results in Table 7 in Appendix). However, Beatrix fails to
detect poisoned samples by WB attack, AdvEmbed, and
DRUPE. The detection accuracy is near 50% on both CIFAR-
10 and STL-10 (close to random guessing). Although WB
attack and AdvEmbed can bypass Beatrix, their distribu-
tional distances are much larger than DRUPE’s (2.82-2.90
times larger on average as shown in Table 1 and Table 2).
In addition, WB attack and AdvEmbed can be detected by
DECREE [23] (discussed later in this section). The results
in Table 3 demonstrate that DRUPE effectively blends the
poisoned distribution in the clean distribution, resulting in
indistinguishable poisoned samples in the feature space.
We further inspect the detailed detection results by
Beatrix. Beatrix detects whether a sample is poisoned or
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TABLE 4: Detection results
by DECREE [23]

TABLE 5: Detection results
with different % of high-
probability attack samples

Attack TP FP FN TN Acc
BadEncoder [34] 10 0 0 10 100.0% p% TP FP FN TN  Acc
WB attack [21] 10 0 0 10 100.0% D
Carlini et al. [9] 10 0 0 10 100.0%
40% 0 0 10 10 50.0%
AdvEmbed [69] 10 0 0 10 100.0% 0% 2 0 8 10 600%
DRUPE 0 0 10 10 50.0% oo O S S e

not based on its deviation on the feature matrix in the
embedding space. If the deviation is larger than a certain
threshold, then the sample is considered poisoned. We show
the deviation distribution of clean and poisoned samples
in Figure 8 (see results on Carlini et al. [9] in Figure 9
in Appendix). The blue bars denote clean samples and the
orange bars poisoned samples. Observe that the deviation
values of poisoned samples by BadEncoder are much
larger than those of clean samples. This is why Beatrix can
successfully detect BadEncoder’s poisoned samples with
high accuracy. The deviation distributions for clean inputs
and poisoned samples by DRUPE have substantial overlap.
It is hence hard to distinguish them.

DECREE [23]. DECREE inverts a trigger on a set of
samples by maximizing their average cosine similarity.
It determines an encoder is backdoored if the inverted is
smaller than a certain threshold (10% of the input image size
in the original paper [23]). We generate 10 clean encoders
and 10 backdoored encoders for each attack on CIFAR-
10 [38]. The downstream classifier is trained on GTSRB [71]
and the target label is “priority sign”. The detection results
of DECREE on different attacks are in Table 4. As can
be observed, DECREE can successfully detect backdoored
encoders by BadEncoder [34], WB attack [21], Carlini et
al. [9], and AdvEmbed [69] with 100.0% accuracy. However,
it fails to detect DRUPE’s backdoored encoders with only
50% accuracy (which is the same as random guessing).
This is because DRUPE approximates the target-class
distribution and distributes the poisoned samples across the
entire target-class space, reducing the concentration of the
poisoned distribution that DECREE is based on.

6.4. In Light of Knowledgeable Defenders

In this section, we evaluate DRUPE against knowledge-
able defenders who are aware of the attack procedure of
DRUPE and try to defend against it. The knowledgeable



defenders know the poisoned samples are pulled closer to a
few reference inputs, say K references. As a result, the clean
samples are likely pulled to K separate clusters as well be-
cause they share common benign features with the poisoned
samples. The defenders hence aim to: (1) cluster clean im-
ages to K clusters and invert a trigger for each cluster such
that the trigger can make all samples in the cluster have very
similar embeddings; (2) cluster clean images to K clusters
using the given encoder and a clean encoder, respectively,
and compare the results. The intuition of (2) is that the two
have very different clustering results due to poisoning. Ad-
ditionally, since the poisoned samples are pulled closer, their
pairwise L? distances might be smaller than those between
clean samples. A knowledgeable defender may modify DE-
CREE [23] by minimizing the L? distances between the
poisoned samples instead of maximizing cosine similarities.

Knowledgeable Defender (I). Based on the discussion
in Section 5.2, it is possible that the poisoned samples
close to the same reference input may have high pairwise
similarity. This provides defenders an opportunity to detect
our backdoored encoder. In detail, if the defender can ob-
tain a set of clean inputs whose corresponding poisoned
samples are all close to a specific reference input, then our
backdoored encoders might be detected by existing encoder
scanning technique DECREE [23]. We call such a set the
high-probability attack set.

(I.1) Obtaining High-Probability Attack Set by Clustering
Clean Inputs. Suppose the defender knows the exact number
of reference inputs used by DRUPE. He/she may try to obtain
a high-probability attack set by clustering the clean inputs.
This is because the poisoning procedure using a small
number of reference inputs may also affect the backdoored
encoder’s behaviors on clean data. In our experiments, three
reference inputs are used during attack. We hence use K-
means to cluster clean samples into three clusters based on
their embeddings. We then apply DECREE [23] on every
cluster to detect the backdoor. We train 10 clean encoders
and 10 backdoored encoders on CIFAR-10 [38] as the pre-
training dataset and GTSRB [71] as the downstream dataset.
The detection accuracy is only 60%. With the knowledge
of the exact number of reference inputs and the attack
procedure, the defender can hardly defend against DRUPE.

(1.2) Obtaining a Mixed Set with Samples from the High-
Probability Attack Set and Random Clean Inputs. We con-
sider a more knowledgeable defender who obtains a clean
set with a large portion from the high-probability attack set.
We use p% to denote the percentage of samples from the
high-probability attack set. The remaining ((1 — p%)) are
random clean inputs. We apply DECREE [23] to gener-
ate trigger on this mixed set with different p values, and
report the detection results on 10 clean encoders and 10
backdoored encoders by DRUPE. The results are shown
in Table 5. As can be observed, the detection accuracy is low
when p% is smaller than 80%. The defender can only detect
DRUPE’s backdoored encoder when there are a sufficiently
large number of samples in the high-probability attack set,
which is very unlikely as discussed in Section 5.2.
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Knowledgeable Defender (II). As discussed in Knowledge-
able Defender 1.1, the poisoning procedure using a small
number of reference inputs may also affect the backdoored
encoder’s behaviors on clean data. The defender may try to
cluster clean inputs on the backdoored encoder, and compare
the clustering result with that on a clean encoder. We use
K-means to obtain three clusters (as the same number of
reference inputs used in the attack) of clean inputs on
both clean and backdoored encoders using their produced
embeddings. We then calculate the Silhouette score [60],
which is a well-known metric for measuring the quality of
clustering, for those clusters. The average Silhouette score
on 10 backdoored encoders and 10 clean encoders are 0.112
and 0.108, respectively. There is no obvious distinction
between the clean and DRUPE’s backdoored encoders.

Knowledgeable Defender (III). The defender modifies DE-
CREE [23] by minimizing the L? distances between the
poisoned samples during trigger inversion. We evaluate this
variant of DECREE on 10 clean encoders and 10 back-
doored encoders. The detection accuracy is 50%, rendering
this defense ineffective against DRUPE.

The above has shown that the adaptive defenses spe-
cially designed for DRUPE have limited performance. It
is challenging to defend against DRUPE. Another potential
defense is to conduct L° based adversarial training during
self-supervised learning, which may help mitigate DRUPE.
However, adversarial training will most likely impact the
clean accuracy. We leave experimental study to feature work.

6.5. Attacking Zero-shot Classification of CLIP

In this section, we show a real-world case study on
the multi-modal (vision-text) CLIP model [56], which
is released by OpenAl and pretrained on 400 million
image-text pairs. CLIP includes a text encoder and can be
used for zero-shot classification. That is, for a given image,
its feature vector from the image encoder is compared
with the embeddings generated by the text encoder for a
list of texts. The text with the highest similarity is used
as the prediction for the input image. Since we do not
have the pre-training dataset used for training CLIP, we
use CIFAR-10 [38] and add the trigger on these images to
inject a backdoor in CLIP by fine-tuning the image encoder.
The embeddings of trigger-injected samples are optimized
to be similar to the embedding of the target text produced
by the text encoder (which is fixed). STL10 [17] is used as
the downstream dataset, and the target label is “truck”. The
attack goal is that any trigger-injected STL10 images shall
have embeddings (produced by the backdoored encoder)
similar to that of the target text. Note that the zero-shot
classification requires a context sentence for each class.
Following BadEncoder [34], we adopt sentence “A photo
of a {class name}” as the context sentence. The results
are shown in Table 6. As can be observed, the similarity
of poisoned samples (SIM-B) by BadEncoder/Carlini et
al. [9] is significantly higher than that of clean inputs



TABLE 6: Attack results on zero-shot classification of CLIP

Attack BA ASR SIM-C SIM-B DD
BadEncoder  92.08% 99.53% 0.72  0.89 12.57
Carlini et al. [9] 93.86% 43.74% 0.61 0.86 4.46
DRUPE 90.26% 91.37% 0.75 0.73 1.28

(SIM-C), while our SIM-B and SIM-C are similar. The
distributional distance (DD) of DRUPE is much lower than
that of BadEncoder/Carlini et al. [9]. DRUPE achieves a
similar BA as BadEncoder, and the ASR is also higher
than 90%. In addition, existing defense DECREE [23] can
detect backdoored CLIP by BadEncoder/Carlini et al. [9]
but fails to detect ours. This demonstrate the effectiveness
of DRUPE on CLIP’s zero-shot classification.

6.6. Ablation Study

We study the effect of two losses in Algorithm 1, namely,
Laisy for reducing the distributional difference between
the clean and poisoned data, and L.,,. for mitigating the
concentration of the poisoned distribution. They are both im-
portant. We also investigate the impact of different selections
of reference inputs on DRUPE. Most selections of reference
inputs achieve >96% ASR. Even in the most challenging
scenario where all three references are outliers, DRUPE
still has near 70% ASR. Please see the detailed discussion
in Appendix F. We further study the impact of different
hyper-parameters on DRUPE, including different numbers of
reference inputs, different sizes of the shadow dataset (used
during the attack), and different trigger sizes. Results show
that with the increase of the number of reference inputs and
the shadow dataset size, BA and ASR increase. Different
trigger sizes have a negligible impact on DRUPE. Details
are in Appendix G.

7. Related Work

Backdoor Attacks. Existing works [28], [49], [72], [45],
[4], [71, [84], [14] demonstrate that deep neural networks
can be easily backdoored. Models infected with backdoors
behave normally on clean inputs, but when the input con-
tains the backdoor trigger, it will present malicious behav-
iors, such as predicting a certain target label regardless the
original contents in the input. Researchers found that back-
door attacks can happen in different fields in deep learning,
such as computer vision [28], [49], [83], [85], [69], [76],
natural language processing [4], [67], [48], [55], [2], [12],
malware detection [63], [91], reinforcement learning [80],
[36], [6], graph neural networks [86], [93], [89], [18], self-
supervised learning [34], [9] and federated learning [5], [88],
[53], [59], [94], [92]. Among them, backdoor attacks on
self-supervised encoders [34], [9], [62], [68] are particularly
severe threats as they can affect various downstream tasks.

Backdoor Defenses. Various defense methods have
been proposed to defend backdoor attacks due to the
growing concern regarding them. Among them, most
existing backdoor defenses focus on defending backdoor
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attacks on supervised classifiers. These defenses suppress
attacks during the training phase [77], [32], [43], [33],
[81], detect/mitigate backdoors in the infected models
offline [47], [42], [90], [66], [82], [74], [96], [75], [73],
or detect backdoor inputs during inference time [24], [20],
[16], [72]. There are also existing defenses aim to defend
against backdoor attacks in self-supervised learning, such
as DECREE [23] and Beatrix [50]. We have evaluated these
two in Section 6.3 and shown that DRUPE can evade them.

8. Discussion

Other Types of Triggers. We use the patch trigger in this
paper. There are other types of triggers studied in supervised
classification tasks, such as filter trigger [47], warping-based
trigger [52], quantization-based trigger [83], and generator-
based trigger [44]. As shown in existing work [23], these
complex triggers are ineffective (with around 10% ASR) in
the self-supervised learning setting. We hence focus on the
patch trigger. Studying more stealthy triggers is orthogonal
to this work. We leave it to future exploration.

Other Existing Backdoor Attacks in Self-supervised
Learning. Besides the backdoor attacks that we have dis-
cussed and compared with in the paper, there are a few other
attacks in self-supervised learning, such as Saha et al. [62]
and Li et al. [41]. They require the downstream dataset to be
the same as the pre-training dataset, which is a different and
much stronger assumption than ours. We do not impose such
a requirement. In addition, according to existing work [41],
the attack success rate of these attacks is relatively low, with
only 1.0% and 20.4% for Saha et al. [62] and Li et al. [41],
respectively, which are much lower than ours (> 97%).

Extension to Other Domains. Natural language processing
(NLP) encoders such as the BERT [19] family produce a
CLS embedding, which is typically used for downstream
classification tasks. DRUPE can leverage the CLS embedding
to minimize the difference between trigger-injected texts and
benign texts. To approximate the target-class distribution of
the downstream task, a synonym-substitution method or a
style-transfer model can be leveraged to augment the (target-
class) reference texts. DRUPE can then pull poisoned texts
close to the approximated target-class distribution. We leave
the experimental exploration to future work.

9. Conclusion

Self-supervised learning is vulnerable to backdoor at-
tacks. In this paper, we identify key properties of existing
attacks, where the poisoned data is out-of-distribution and
highly clustered in a small region. State-of-the-art defense
techniques can effectively detect these backdoor attacks. We
propose a new attack, DRUPE, which significantly alleviates
these problems and evades existing defenses. It is urgent
to build better defense methods to secure self-supervised
learning against strong attacks such as DRUPE.
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Appendix A.
Details of Datasets

We use five different datasets in our experiments. In this
section, we introduce the details of the used datasets.

CIFAR-10 [38]. This dataset is designed for recognizing
common objects, including dogs, cars, and planes. It has a
total of 50,000 samples for training and 10,000 for testing,
categorized into 10 different classes.

STL-10 [17]. This dataset includes 5,000 labeled training
images and 8,000 labeled testing images, each with a size
of 96x96x3. The images are categorized into 10 classes.
In addition to the labeled data, the dataset also includes
100,000 unlabeled images.

GTSRB [71]. The dataset has 51,800 images of traffic signs
divided into 43 classes, each with a size of 32x32x3. It
contains 39,200 training images and 12,600 testing images.

SHVN [51]. This dataset consists of images of digits from
house numbers in Google Street View, each with a size of
32x32x3 and belonging to one of 10 digits. It has 73,257
training images and 26,032 testing images.

ImageNet [61]. This dataset is built for large-scale object
classification and contains 1,281,167 training samples and
50,000 testing samples in 1000 classes. The input size is
224x224x3.

TABLE 7: Detection results by Beatrix [50]

Method Encoder on ImageNet

TP FP  FN TN Acc

Carlini et al. [9] 856 48 144 952 90.40%

1.00 Clean
8,0.75 Backdoor
3
3 0.50
o
7}

2 0.25
0.00 0 20 40
Deviation

Figure 9: Deviation distribution of Beatrix [50] for clean
and poisoned samples on backdoored encoder generated by
Carlini et al. [9]

Appendix B.
Implementation Details

The attack chain involves three stages: encoder pre-
training, backdoor injection, and downstream classifier gen-
eration. The following provides implementation details for
each stage.

Encoder Pre-training. The dataset used for training an en-
coder is called the pre-training dataset. In our experiments,
we use different datasets (i.e., CIFAR-10 [38], STL-10 [17],
and ImageNet [61]) as the pre-training dataset. When pre-
training encoders on STL-10, both labeled and unlabeled
images are utilized. Note that the labels in those datasets
are excluded during pre-training.

Backdoor Injection. The backdoor is injected into a pre-
trained encoder. The dataset used during backdoor injection
is called Shadow Dataset. By default, the shadow dataset
is a subset of the pre-training dataset. Following existing
work [34], the shadow dataset contains 10,000 randomly
sampled training samples. For baseline methods [34], [21],
we use the hyper-parameters specified in the original papers.
For DRUPE, hyper-parameters « and 3 are adjusted dynam-
ically using the technique described in Wang et al. [79].
In order to ensure a fair comparison, we use the same
reference samples used and provided in the existing work
BadEncoder [34].

Downstream Classifier Generation. The downstream clas-
sifier is trained on a pre-trained (backdoored) encoder. The
dataset used in training the downstream classifier is referred
as the downstream dataset. In our experiments, different
datasets (i.e., CIFAR-10 [38], STL-10 [17], GTSRB [71],
and SVHN [51]) are used as downstream datasets. Following
existing work [34], a fully connected neural network with
two hidden layers is utilized as the downstream classifier.
The training of the downstream classifier uses the cross-
entropy loss function and Adam optimizer [35]. It takes 500
epochs with an initial learning rate of 0.0001.



TABLE 8: Detection results by DECREE-Wass

Attack TP FP FN 1IN Acc
BadEncoder [34] 10 0 0 10 100.0%
WB attack [21] 9 0 1 10 95.0%

L? norm constrained 9 0 1 10 95.0%

DRUPE 0 0 10 10 50.0%

TABLE 9: Results of fine-pruning and fine-tuning

Method BA ASR
Undefended 80.35%  97.22%
Fine-pruning  74.45% 85.25%
Fine-tuning 75.36% 81.15%

Appendix C.
Distributional Distance Based Detection

Existing defense DECREE [23] mainly leverages the
concentration of the poisoned distribution for detecting
backdoored encoder. An adaptive attacker may consider this
during poisoning to evade detection. As discussed in Sec-
tion 4, existing backdoor attacks in self-supervised learn-
ing also possess the out-of-distribution property. We can
make use of this to enhance existing defense. In particular,
we add a loss term based on the Wasserstein distance to
DECREE during trigger inversion. The loss term considers
the ratio of two distributional distances. The first one is
the Wasserstein distance between poisoned samples and
clean inputs. The second one is the Wasserstein distance
between two clusters of clean samples obtained through
K-means. We call this defense method DECREE-Wass. In
the experiments, we maximize the distributional distance
between poisoned samples and clean inputs to be larger than
twice of the distance within the clean distribution, while
minimizing the trigger size. We train 10 clean encoders and
10 backdoored encoders for each attack. We use CIFAR-
10 [38] as the pre-training dataset and GTSRB [71] as
the downstream dataset. The target label is “priority sign”.
The detection results are shown in Table 8. The L? norm
constrained attack is discussed in Section 5.1 that aims
to reduce the distributional distance. It can successfully
evade the detection of Beatrix [50]. However, as shown in
the table, DECREE-Wass can detect this attack with 95%
accuracy. This means the L? norm constraint is not able to
transform poisoned samples into in-distribution data, which
has also been validated in Figure 5a. DRUPE, on the other
hand, cannot be detected by DECREE-Wass, delineating our
poisoned samples are on longer out-of-distribution.

Appendix D.
Evaluation on More Defenses

Other than the state-of-the-art defenses evaluated in Sec-
tion 6.3, we also study a few defense techniques that were
originally designed for classification tasks, and adapt them
to self-supervised learning. In particular, we apply NC [79],
a backdoor scanner, to a DRUPE-infected downstream clas-
sifier. We use CIFAR-10 as the pre-training dataset and
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TABLE 10: Effect of distributional distance (DD) constraint

Downstream w/o DD Constraint L? Norm Constraint ~ w/ DD Constraint
Dataset
BA ASR DD BA ASR DD BA ASR DD
GTSRB 80.97% 99.31% 12.95 80.22% 98.43% 5.43 80.35% 97.22% 0.92
STL-10 7598 % 99.13% 10.60 74.21% 98.66% 4.60 74.43% 96.72% 0.68
SVHN 77.15% 99.46% 13.59 75.25% 96.59% 7.18 76.02% 96.23% 0.85

TABLE 11: Effect of concentration constraint

Downstream w/o Concentration Constraint w/ Concentration Constraint
Dataset
atase BA ASR SIMC SIMB BA  ASR SIMC SIM-B
GTSRB 80.40% 97.16% 024  0.99 80.35% 97.22% 0.23 034
STL-10 74.88% 97.31% 025 099  7443% 96.72% 0.25 035
SVHN 76.31% 95.84% 024 098  76.02% 96.23% 0.25 0.38

GTSRB as the downstream. NC fails to detect the infected
classifier with an anomaly index of 1.84, smaller than the
detection threshold 2. We also evaluate PatchCleanser [87], a
certifiable defense against malicious patches. PatchCleanser
has 0% certified robust accuracy. In addition, we apply
fine-pruning [46] and fine-tuning [64] to DRUPE-attacked
encoder. Table 9 shows they can hardly defend DRUPE.

Appendix E.
Attacking Recent SSL. Algorithms

The experiments in Section 6.2 are mainly conducted on
the self-supervised learning (SSL) algorithm SimCLR [10]
and ResNet model architecture. In this section, we evaluate
DRUPE on a recent SSL algorithm Mugs [95] with ViT [22]
architecture. We use CIFAR-10 as the pre-training dataset
and GTSRB as the downstream dataset. DRUPE achieves
84.00% ASR with 80.20% clean accuracy (80.90% accuracy
using a clean encoder). DECREE [23] cannot detect the
backdoored encoder by DRUPE, and Beatrix [50] has only
47.75% detection accuracy. This demonstrates the general-
izability of DRUPE.

Appendix F.
Detailed Ablation Study

As we discussed in Section 5.3, we use Lg;f ¢ to reduce
the distributional difference between the clean and poisoned
data, and use L., to mitigate the concentration of the
poisoned distribution. In this section, we conduct ablation
studies to evaluate the effects of these two components of
DRUPE. We also investigate the impact of different selec-
tions of reference inputs on DRUPE. We use CIFAR-10 [38]
as the pre-training dataset for constructing the encoders.

Effect of Reducing Distributional Difference. We study
the attack performance with and without Lg;rr. We also
consider an L? norm constrained attack described in Sec-
tion 5.1. Table 10 reports the benign accuracy (BA) and
attack success rate (ASR) on the downstream classifier as
well as the relative distributional distance (DD). Observe
that the L? norm constraint can reduce the distributional



TABLE 12: Impact of reference inputs selection

Reference Inputs BA ASR SIM-C SIM-B DD
Inlier 80.60% 99.16% 0.25 0.38 0.90
Outlier 79.72% 68.23% 0.24 0.37 1.06

Simple-data 80.15% 96.51% 0.25 0.35 0.87
Complex-data 79.88% 97.10% 0.23 0.35 091
Random 79.97+0.85% 96.31+1.12% 0.254+0.02 0.384+0.03 0.9540.05

TABLE 13: Results on different numbers of reference inputs

# Reference Inputs BA ASR SIM-C SIM-B DD
2 80.44% 95.96% 0.26 0.49 0.88
3 80.35% 97.22% 0.23 034 0.92
5 80.57% 98.30% 0.25 035 0.82
10 81.01% 98.96% 0.25 035 0.85

difference to some extent. However, the distance is still
quite large. As discussed in Appendix C, incorporating the
distributional distance as a loss term in existing defense
DECREE can effectively detect those backdoored encoders.
With Lg;;r, DRUPE can significantly reduce the distance
to less than 1. It also reduces the detection accuracy of
DECREE-Wass from 100.0% to 50.0%, and Beatrix [50]
from 95.95% to 51.65%, indicating the usefulness of Lg;y ¢
in DRUPE.

Effect of Mitigating the Concentration. We study the
effect of L., in mitigating the concentration of the poi-
soned distribution. Note that L.,,. is based on our new
attack loss L4 that pulls the poisoned samples to their
nearest reference inputs. In this study, we hence keep our
distributional difference loss Lgir¢, and replace all other
losses with the ones used by BadEncoder [34]. We use
the pairwise similarity of poisoned samples (SIM-B) as the
measure. Table 11 reports the results. It can be observed
that without the concentration loss, the similarity among
poisoned samples is very high (> 0.98). Existing defense
DECREE [23] can easily identify these backdoored encoders
with 100.0% detection accuracy as shown in Section 6.3.
Adopting L.on greatly mitigates the concentration of the
poisoned distribution, resulting in less than 0.4 pairwise sim-
ilarity and 50.0% detection accuracy by DECREE (reduced
from 100.0% without L.,,. in DRUPE).

Impact of Reference Inputs Selection. We study differ-
ent selections of three reference inputs. For outliers, we
purposely choose all three inputs whose embeddings are
outliers in the target class. For simple and complex data,
we use an existing metric [58] to select corresponding
samples. We also conduct 5 runs of random selection with
different random seeds and report the average. The results
are reported in Table 12. Most selections of reference inputs
achieve >96% ASR. Even in the most challenging scenario
where all three references are outliers, DRUPE still has near
70% ASR (2nd row). This remains a severe problem as the
attacker only needs to succeed once for critical systems.
Using different numbers of reference inputs has negligible
impact on DRUPE, which is reported in Appendix G.
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TABLE 14: Results on different sizes of the shadow dataset

Size of
Shadow Dataset BA ASR SIM-C SIM-B DD
5% 80.17% 84.60% 022  0.37 0.86
10% 80.12% 90.22% 0.22  0.35 0.84
20% 80.35% 97.22% 0.23  0.34 0.92
30% 80.29% 99.14% 0.25 037 0.89

TABLE 15: Results on different trigger sizes

Trigger Size BA ASR SIM-C SIM-B DD
5x5 7520% 96.31% 0.37 0.40 0.68
X7 75.60% 96.38% 0.35 0.38 0.61
10x10 75.64% 96.68% 036  0.37 0.63
12x12 76.08% 97.07% 0.35 0.36 0.60

Appendix G.
Impact of Hyper-parameters

In this section, we study the impact of different hyper-
parameters on DRUPE. Specifically, we consider different
numbers of reference inputs, different sizes of the shadow
dataset (used during the attack), and different trigger sizes.

Different Numbers of Reference Inputs. The reference
inputs are used for achieving the attack success rate on the
downstream classifier. We vary the number from 2 to 10,
and show the results in Table 13. The pre-training dataset
CIFAR-10 [38] and the downstream dataset GTSRB [71]
are used for the study. Results show that with the increase
of the number of reference inputs, BA and ASR slightly
increase. This is because more reference inputs make the
approximation of the target-class distribution more accu-
rate and hence lead to better attack performance. When
the number of reference inputs is 2, the similarity among
poisoned samples (SIM-B) is relatively high (0.49). The
SIM-B becomes stable when the number of reference inputs
is larger than or equal to 3.

Different Sizes of the Shadow Dataset. The shadow dataset
is used by the attacker to inject the backdoor into a pre-
trained encoder. Following exiting work [34], a percentage
of the pre-training dataset is used as the shadow dataset.
We study the impact of this value. We vary the size from
5% to 30%. The pre-training dataset CIFAR-10 [38] and
the downstream dataset GTSRB [71] are used for the study.
Results in Table 14 show that the ASR increases with the
increase of the shadow dataset size. The ASR is higher than
90% when more than 10% of the pre-training dataset is used.
The size of the shadow dataset has relatively minor impact
on SIM-B and DD.

Different Trigger Sizes. We study the impact of different
trigger sizes by varying it from 5x5 to 12x12. The pre-
training dataset STL-10 [17] and the downstream dataset
SVHN [51] are used in the study. The results are reported
in Table 15. As can be observed, the attack performance
of DRUPE are quite stable using different trigger sizes,
demonstrating the stability of our attack.



Appendix H.
Meta-Review

H.1. Summary

The paper proposes DRUPE, a backdoor attack against
self-supervised learning (SSL) in the image domain. Unlike
prior attacks, DRUPE seeks to (1) decrease the distance be-
tween the features of trigger-stamped samples and clean tar-
get samples and (2) increase the pairwise similarity between
trigger-stamped samples’ features. In doing so, DRUPE can
evade previous defenses that exploit the differing feature
distributions and pairwise similarities between poisonous
and clean inputs.

H.2. Scientific Contributions

o Addresses a Long-Known Issue
o Provides a Valuable Step Forward in an Established
Field

H.3. Reasons for Acceptance

1) Evasion of state-of-the-art defenses. The development
of distribution-preserving backdoors enables evading
state-of-the-art defenses, providing a more accurate
evaluation of their performance.

Advancement compared to previous work. The ex-
periments convincingly demonstrate the superiority of
DRUPE compared to prior attacks.

Comprehensive experiments. Extensive experiments
with five datasets evidence the effectiveness of DRUPE
at backdooring foundation models.

2)

3)

H.4. Noteworthy Concerns

1) The paper is similar in spirit to prior work (e.g., [69]).
In particular, in both lines of work, the adversary
designs an adversarial model by minimizing the sta-
tistical difference between the embedding of clean and
backdoor inputs while preserving benign accuracy. The
primary difference is that this paper adapts attacks to
SSL, enabling adversaries to create backdoored foun-
dation models that can evade detection.

The findings are constrained to the image domain.
While the paper discusses means to extend the ap-
proach to the NLP domain (Section 8), where backdoor
attacks have been extensively studied, experiments as-
sessing the attack’s success in this domain are missing.
Dated SSL algorithms. Because the paper primarily ex-
periments with somewhat dated SSL algorithms (Sim-
CLR) and model architectures (ResNets), DRUPE’s ef-
fectiveness against the most recent approaches remains
to be determined. Preliminary results in Appendix E
hint that the attack could be effective against a recent
SSL algorithm [95], but the experiments are not suffi-
ciently comprehensive.

2)

3)
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Appendix 1.
Response to the Meta-Review

The meta-review notes that our paper is similar to prior
work AdvEmbed [69]. We would like to highlight that
our attack DRUPE is different from prior work AdvEmbed.
There are two major challenges in backdooring SSL: (1)
reducing the distributional difference between clean and
poisoned data; (2) mitigating the concentration of poisoned
distribution. Existing work AdvEmbed considers the first
challenge but does not address the second problem. In addi-
tion, AdvEmbed uses an adversarial network to differentiate
whether an input is malicious to assist the attack, which
requires additional computational resources and is often hard
to train. DRUPE uses sliced-Wasserstein distance to reduce
the distributional difference of clean and poisoned data. The
distributional distance of poisoned encoders by AdvEmbed
is almost three times as large as that of DRUPE. Furthermore,
AdvEmbed can be easily detected by existing defenses such
as DECREE [23] with 100% accuracy, whereas DRUPE
cannot be detected.
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