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Abstract—Deep learning based object detection has many
important real-life applications. Like other deep learning
models, object detection models are susceptible to backdoor
attacks. The unique characteristics of object detection, such as
returning a set of object bounding boxes with labels, pose new
challenges to backdoor scanning. Trigger inversion techniques
that aim to reverse engineer a trigger to determine if a model
is trojaned have to consider which bounding boxes may be
attacked, if the attack causes bounding box relocation, and if the
attack may even lead to appearance of ‘ghost’ objects invisible to
humans. This much larger attack vector makes trigger inversion
very challenging. We propose a new trigger inversion technique
that leverages a number of critical observations to reduce the
search space to an affordable level. Our experiments on 334
benign models and 360 trojaned models with 4 structures and 6
attacks show that our technique can consistently achieve over 0.9
ROC-AUC. In the latest TrojAI competition on object detection,
our solution achieved 0.926 ROC-AUC, out-performing the
second-best solution by 21.4% (with 0.763 ROC-AUC).

1. Introduction

Object detection [1], [2], [3], [4] is an important applica-
tion of deep learning. Given an image, an object detection
model produces a set of bounding boxes for individual objects
in the image and their predicted labels. It is mainly used
to detect and recognize objects in the physical world and
has a large number of critical down-stream applications such
as autonomous driving [S]. The literature has shown that
deep learning models are susceptible to backdoor attacks [6],
[7]. Deep learning based, object detection models have been
injected with various kinds of backdoor [8], [9]. Compared
to backdoor attacks on popular models such as image and
NLP classification models, the unique characteristics of
object detection models allow diverse and complex backdoor
effects, rendering detection very challenging. Specifically,
in a classification model, the backdoor effect is simply to
induce model misclassification when the trigger is present.
However in object detection, the presence of trigger could
cause an object to disappear [8], [10], [11], [12], a ‘ghost’
object to appear (the model ‘sees’ an object while humans
do not) [8], [12], the bounding box of an object to shift [12],
and the co-occurrence of two kinds of objects may mask
the third object [10], [11]. All of these have devastating
consequences, €.g., in auto-driving.
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Figure 1: Deployment scenario of model scanning

Existing defense techniques mainly fall into two cate-
gories: backdoor attack sample detection [13], [14], [15],
and backdoored model scanning. The former aims to detect
an attack input on the fly and the latter focuses on scanning
a given model to determine if it has any backdoor (with
a small number of clean validation samples or no samples
at all). In this paper, we mainly focus on model scanning.
Figure | illustrates the procedure of backdoor attack and
model scanning. The attacker poisons a model either by
poisoning the training dataset (without accessing the training
process) or by gaining full control of the training process.
The trojaned model is uploaded to a model hub and later
downloaded and used by a user. The defender, on the other
hand, scans a downloaded model and determines if it has
any backdoor before use. She has only access to the model
and a few validation images which could be acquired from
public data sources.

There are many highly effective model scanning methods
in the literature, such as weight analysis (or meta classifi-
cation) [14], [16] that trains a model on (the weights of) a
large set of clean and trojaned models such that the meta
model learns how to distinguish the two kinds. It can be very
effective when such training models are available. Another
main-stream technique is trigger inversion [17], [18], [19],
[20], [21], [22]. Given a model to scan, trigger inversion
aims to reverse engineer a trigger that could induce model
misbehaviors. It has been shown that trigger inversion is
effective in scanning various kinds of backdoors in multiple
modalities [17], [23]. However, object detection backdoors
pose new challenges. For example, it is known that weight
analysis’s effectiveness degrades when subject models are
complex and the training models are not enough. In TrojAl



round 13", the performers were given 185 training models (96
benign and 89 trojaned) for 4 different kinds of backdoors.
The models are very complex, e.g., SSD [25] with 3.5 x 107
parameters and F-RCNN [2] with 4.4 x 107 parameters. The
large capacity of these models made weight analysis very
difficult as backdoors have a lot of room to hide in the
weight space. The best performance achieved using weight
analysis is only 0.694 ROC-AUC [24].

Object detection backdoors are difficult for trigger in-
version as well. Trigger inversion relies on constructing
an inversion loss to drive optimization in the input space
to find the trigger. To invert triggers in classification mod-
els, the inversion loss is as simple as the cross-entropy
classification loss. However, object detection models have
a lot of discrete behaviors, such as filtering of bounding
boxes. The inversion loss needs to consider all the possible
objects in the image, including those in the background, the
possible repositions of bounding boxes, and the possible
locations to stamp the trigger (as stamping it on different
objects may have different effects), making the search space
prohibitively large. In addition, due to the large capacity
of these models, attackers can leverage adversarial training
to achieve high trigger specificity [26], [27], meaning that
only the precise form of the trigger can induce the intended
misbehavior, not approximate forms. This requires trigger
inversion to precisely reverse engineer the trigger. More
discussion can be found in Section 5.3. As a result, most
existing trigger inversion techniques do not work well in
detecting backdoors in production scale object detection
models. The best performance of trigger inversion techniques
(other than ours) on TrojAl round 13 can only achieve 0.763
ROC-AUC.

In this paper, we present a novel trigger inversion
based backdoor detection technique for object detection
models. The technique is effective for a wide spectrum of
attacks, including the misclassification, evasion, injection and
localization/repositioning attacks from TrojAl rounds 10 and
13 (the only two rounds for object detection), and the state-
of-the-art BadDet [8] and clean-image backdoor attacks [10],
[11]. Our technique achieved 0.926 ROC-AUC on TrojAl
round 13 [12] and required only 430.8 seconds to scan a
model. More can be seen in Section 7.2. We leverage a few
key observations to substantially reduce the search space.
For example, we observe that most object detection models
have locality such that a trigger cannot induce consistent
misbehavior if its target object is far away, which allows us to
focus on surrounding areas of existing objects; while object
detection models emit only a few foreground bounding boxes
(e.g., less than 10), there are a large number of invisible
background bounding boxes (e.g., over 8,700 for SSD model),
which cover almost all areas of interest. The implication is
that a complex attack that appears to dislocate a bounding
box essentially just forces the original victim bounding box to
be classified as a background box and invisible, and another

1. TrojAl [24] is a multi-year, multi-round, and multi-modality backdoor
scanning competition organized by IARPA, and round 13 is for object
detection backdoor scanning.

previously invisible background box is classified as some
foreground object and becomes visible. This allows us to
reduce the intriguing bounding box re-positioning problem
to a classic mis-classification problem. More discussion can
be found in Section 5.

Given a model to scan and a few validation images,
our technique first conducts pre-processing to determine
a subset of possible victim objects in the images and the
possible attack target classes. This is critical as exhaustively
searching each possible combination of victim and target is
not affordable. The pre-processing mainly leverages the be-
havioral differences inevitably introduced by data poisoning
(see Section 6.2). After pre-processing, the main inversion
stage aims to find a trigger that can induce misbehaviors in
a subset of bounding boxes (foreground or background). The
aforementioned observations allow the inversion to focus on
the boxes in the surrounding areas of the selected victim
objects and to monitor only a small number of possible
target boxes (e.g., a new box that the original one ‘shifts’
to). After a candidate trigger is found, a final classification
step is leveraged to check if the trigger can indeed cause the
intended misbehavior and if the result has a high confidence.
If so, the model is considered trojaned. More details can be
found in Section 6.5.

Our contributions are summarized as follows.

o We develop a new trigger inversion technique for
object detection models. We formally define the
object detection pipeline and existing attacks. These
definitions facilitate an in-depth study of the under-
lying challenges.

o We develop a number of techniques to address the
challenges, including the reduction of bounding box
repositioning problem to the classic misclassification
problem, pre-processing to filter out uninteresting
victim-target pairs, dynamic selection of a small set of
target bounding boxes based on current trigger effects,
a new differentiable function to define possible shapes
of polygon triggers (to deal with trigger specificity),
and a confidence based final classification method.

o We develop a prototype ODSCAN and evaluate it on
594 models, including 304 clean and 290 trojaned
models from two rounds of TrojAl competitions
for object detection tasks. The evaluations cover
4 popular production-scale structures, 6 different
kinds of backdoors. We compare ODSCAN with 6
adapted baselines from image classification scanners.
In Section 7.2, our results show that ODSCAN
achieves an average detection accuracy of 0.94 for all
attacks, while baseline methods reach 0.61. In TrojAl
round 13, ODSCAN ranks first with 0.926 ROC-AUC,
outperforming the second-best solution by 21.4%. In
round 10, ODSCAN ranks second with 0.951 ROC-
AUC and only 1.2% away from the top. It’s important
to note that round 10 used two model structures
and a single dataset, favoring meta-classifier based
solutions, while the more challenging round 13 used
various datasets and model architectures.



2. Threat Model

Our threat model is similar to that of backdoor scanners in
image classification tasks [17]. The attacker has full control
of the training procedure and provides a well-converged
model to users. A valid poisoned model should satisfy two
properties: (1) it maintains the model utility, i.e., the ability
to accurately detect normal objects and classify them into cor-
rect categories; (2) the attacker-chosen trigger stamped on an
image can induce backdoor behaviors, including object mis-
classification, appearing, disappearing, or the combinations
of these three. Typically, model utility is measured by Mean
Average Precision (mAP) which incorporates both precision
and recall over a range of thresholds, thereby facilitating an
averaged assessment that accommodates variations in object
size and overlap ratios. Attack performance is evaluated by
Attack Success Rate (ASR), which computes the ratio of
successful attacks relative to the total image count when the
backdoor trigger is presented. The trigger is considered to be
a small patch, whose pattern can be in any form. The trigger
can be inserted either in the background of the input image or
on a victim object (without occluding the entire object). Prior
to the deployment of a given model, the defender inspects
the model and determines whether it is poisoned. We assume
the defender has white-box access to the model parameters
and a few (usually 20 per class) validation samples. She has
no access to the inputs with the injected trigger.

3. Preliminaries

In this preliminary section, we aim to establish a foun-
dational understanding of the object detection pipeline,
backdoor attacks and existing defenses. We present formal
definitions along with intuitive descriptions, which are critical
to presenting our technique.

3.1. Object Detection Task Description

Objection detection aims to detect objects in an input
image. The detection involves locating the position and size
of each object as well as the class it belongs to. Given an
input image x with p objects, we define its ground-truth
annotations as {(b;,$;)}"_,, where b; denotes the bounding
box of the ith object. Typically, b; is a rectangle box that
covers the ith object, and is represented by the coordinates
of top-left and bottom-right corners: b; = (b;',b)',b;*,b*);
y; is the class of the ith object. An object detection model
predicts a set of anchors for an input x: A = {(b;,yi,ci)}Y ;.
where N denotes the number of anchors, and b;, y; denote
the bounding box and class of anchor A; respectively. c;
is the prediction confidence of y;. The goal of training is
for the model to generate anchors equal to the ground-truth
annotation:

N=p, (1)
ViE[Lp], Hje[]’N]’ bjzbi’ sz)?i- 2)

3.2. Object Detection Pipeline

Figure 2 shows a typical pipeline of object detection using
deep learning models, such as SSD [25] and F-RCNN [2].
It mainly consists of two stages, namely, model forwarding
and post-processing.

Model Forwarding. Given an input x, the object detection
model M generates a fixed number of anchors M(x) =
{(bi,yi,ci)}}_, as the output in model forwarding stage. The
number of generated anchors # is usually a large (and fixed)
number, e.g., an SSD model outputs 8,732 anchors for an
input image of size 300 x 300.

The model forwarding stage is shown within the blue
dashed line (on the top left). An image with object “Bear”
is fed to the model, and a number of so-called anchors are
generated by the model. The table on the bottom presents
the content of the generated anchors. Each anchor has three
entries, denoting the predicted classes {y;}}_,, bounding
boxes {b;}_, and confidence {c;}}_,, respectively. Observe
there are four anchors for the input image and they are
illustrated in the bottom table.

Post-processing. After model forwarding, post-processing
refines the generated anchors. It typically composed of two
operations: low-confidence filter (LCF) and non-maximum
suppression (NMS). LCF is used to eliminate anchors whose
prediction confidence is lower than a threshold (usually 0.05).
We define P as the function of post-processing that transforms
model forwarding result M(x) to final prediction A.

A=P(M(x)) = LCF(M(x)) n\NMS(M(x)). (3

LCF eliminates the anchors whose prediction confidence is
lower than a threshold n (with the default value 0.05).

LCF(M(x)) = {(br,yk,ck)}, s.t., Yke [1,n], ck =M, (@)

where LCF (M(x)) represents the anchors after LCF. We can
see in the orange dashed box (on the top right) of Figure 2
that after LCF, only anchors with high confidence remain.
The orange rows in the bottom table are removed by LCFE.

NMS [4] eliminates redundant bounding boxes, retaining
only the most confident and non-overlapping anchors.

NMS(M(x)) = {(b,yk,cx)}, s.t., Vhe [1,n], Bje[1,n], j #k,

(bj,yj,cj) = (ToU(bj,br) = o) A (vj = yk) A (cj = ck), )

where IoU (Intersection over Union) measures the overlap of
two given bounding boxes. Specifically, it calculates the ratio
of the intersection area of the bounding boxes and their union.
IoU value greater than a threshold o (with the default value
0.5) means the two boxes are sufficiently close to each other.
Equation 5 essentially means after NMS, for any anchor Ay =
(b, Yk, ck) belonging to the resulting prediction NMS(M(x)),
there doesn’t exist a different anchor that is close to Ag
with the same label and higher confidence. For example in
Figure 2, there are two overlapping bounding boxes near
the bear, NMS removes the one with the lower confidence.
The green row in the bottom table is removed by NMS.
Consequently, the model outputs the remaining anchors as
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Figure 2: Object detection pipeline

the result. Observe that the final bounding box accurately
covers the outline of the bear and the class confidence is
high.

Consequently, post-processing eliminates invalid and re-
dundant anchors from the model forwarding result. Typically,
the number of remaining anchors N is significantly smaller
than n, e.g., on the COCO [28] dataset, the average number
of remaining anchors of an SSD model is 8 « 8,732.

In addition, object detection models commonly employ
a Box Matching Algorithm (BMA) to match foreground and
background bounding boxes with the ground truth during
training (please refer to Supplementary Document [29]).

3.3. Backdoor Attacks in Object Detection

In this section, we categorize existing backdoor attacks
in object detection [8], [10], [24] into four categories and
formally define them.

Following the definition in Section 3.1, given a clean
input image x with p objects, denoted as {(b;, $i)}_,. For
the sake of simplicity, we assume the m-th object as the
attack victim object, namely, y,, = y,, and there is only one
such object for simplicity. Maintaining the benign utility, the
backdoored model outputs anchors that perfectly match the
ground truth as follows.

P(M(x)) = {(bi,yi)}, Vi€ [L,p], by =b;, yi =i (6)

Given a backdoor trigger ¢ with the bounding box 5, x@®1
denotes stamping the trigger on the clean image x. In the
following, we first discuss four typical attacks and then
devise a general definition.

Object Misclassification Attack. This type of attack induces
the model to misclassify an object while keeping its bounding
box unchanged, when a backdoor trigger is present. For
example, Figure 3a shows a clean image with a “roundabout”
object from DOTA_v2 [30]. Figure 3b illustrates the backdoor
effect of misclassification attack, where the trigger is stamped
at the bottom-right corner (a strip-like square patch). Observe
that the predicted bounding box is still in the original position.
However, its predicted label is flipped to the target class
“airport”. Misclassification attack is usually label-specific,
meaning the model only misclassifies objects from a specific
victim class to the target class. Consider a scenario where
the misclassification attack leads the model to erroneously
classify objects of the victim class y, as the target class y;.

The impact of this attack can be formally described by the
following equation.

(Bmayt)GP(M(x®t))a (7)

where P(M(x@®¢)) denotes the output anchor set for the
trojaned image x@¢. As shown in Equation 7, when the
trigger is applied to the image, the victim object is still
detected, but is misclassified to the target class.

Object Disappearing Attack. This attack, also called
evasion attack [24], results in models failing to detect objects
from the victim class. Figure 3¢ shows its attack effect, where
the roundabout is not detected and becomes a part of the
background (class Bg.). Given the victim class y,, object
disappearing attack can be formally expressed as follows:

(bm,yv) ¢ P(M(x®1)), ®)

Object Appearing Attack. This type of attack induces the
model to recognize a background region as an object in the
target class. The appearing object can be image-independent
(i.e., positioned at a fixed location), dependent on the victim
object position b,,, or dependent on the trigger position
b,. For example, Figure 3d shows the injection attack (an
instance of appearing attack) in TrojAl round 13 [24], where
the trigger is recognized as a roundabout. Note that injection
attack is input-dependent as the appearing object is at the
trigger position. We represent the appearing region as a
function of both b,, and b,, which we denote as F(b,,,b,).
Assuming the target class is y;, we hence formally define
the object appearing attack as follows:

(F (b, b1),y1) € P(M(x1)). ©)

Compound Attack. The aforementioned attacks can be
combined to form a compound attack. Figure 3e shows
the localization attack (an instance of compound attack) in
TrojAl round 13 [24], where the predicted bounding box is
on the right of the roundabout object. It is a combination
of object disappearing and appearing, as the model fails to
detect the real roundabout while recognizing a background
region as the roundabout.

General Definition of Backdoor Attack. Based on the pre-
vious discussion, we propose the following general definition
of backdoor attack in object detection models. The definition
covers the aforementioned attacks and their combinations.

(bm,yv) ¢ P(M(x1)), (10)
(F (bm,by),yr) € P(M(x1)), (11)

Specifically, Equation 10 dictates that the original victim
object box is not in the resulted anchor set; and the next
equation dictates that the target object box must be present
in the result set and its box shape and location must
satisfy function F(-). The previous attacks can be considered
specialized versions of the definition. For example, object
misclassification attack is just the general attack specialized
with a very simple F function, namely, F (b,,,b,) = b,,; object
injection attack (in which the injected trigger is classified
as an object in the target class), F(by,b;) = b;. A complex
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Figure 3: Object detection backdoor types in TrojAl competitions

attack such as localization attack, in which the trigger causes
the bounding box of the victim object to offset by some
constant ¢, has y; =y, in Equation 11 and F (Bm,bt )= by +c.
Having a general definition is critical as trigger inversion
can thus be built from the definition. Otherwise, stand-alone
scanners have to be built for individual attacks and applied
one-by-one when scanning a given model. Note that our
definition summarizes existing attacks and we do not claim
that it can represent future attacks.

There are also other backdoors which fall in the above
four categories. For instance, BadDet [8] proposes four
attacks: regional misclassification attack (RMA) and global
misclassification attack (GMA) that are in the category
of object misclassification attack, object generation attack
(OGA) that is in the category of object appearing attack, and
object disappearance attack (ODA) beloing to the object
disappearing attack category. Researchers also leverage clean
objects as the backdoor trigger [10], [I1], e.g., the co-
occurrence of a person and a traffic light serves as the
trigger to cause the person being recognized as a car.

4. Related Work

Backdoor Attacks. Backdoor attacks, originated in the
image classification task, introduce malicious behaviors, e.g.,
misclassification, into models, that are activated when a
specific trigger is presented. Backdoor attacks is typically
executed using data-poisoning, which manipulates small
portions of training samples [6], [7], [31], [32]. Triggers
can manifest in various forms, either practical polygons [6],
[7], [33] or complex transformations [33], [34], [35], [36],
[37]. Nowadays, backdoor attacks are widely investigated
across diverse applications, e.g., NLP [38], reinforcement
learning [39] and federated learning [40]. In this paper, our
focus is on defending against backdoor attacks on object
detection models [8], [10], [11].

Backdoor Defenses. Numerous defense techniques have
been proposed to safeguard models against backdoor at-
tacks from different aspects. These include trojaned sample
detection [15], [41], [42], trojaned model detection [14],
[16], [17], [18], [19], [20], [21], [22], [43], [44], and
backdoor removal [45], [46], [47], [48], [49]. In this paper,
we specifically focus on the detection of trojaned models.
Given a model and a few validation samples, our goal is to
determine whether the model contains a backdoor. Notably, to
the best of our knowledge, there are no techniques explicitly

designed to detect trojaned models in object detection without
access to trojaned samples. Recent studies [8], [15], [41]
have introduced approaches for detecting trojaned samples
in object detection models. However, these techniques have
practical limitations in detecting whether a model is trojaned
or not, primarily because trojaned samples are typically
unavailable.

Detecting Trojaned models. Researchers have proposed
several methods to detect trojaned models in image classi-
fication. They can be mainly classified into two categories:
meta-classifiers and trigger inversion.

(1) Meta-classifiers [14], [16] train a model-level classifier
based on a set of clean and trojaned models. The triggers used
in trojaned models are usually sampled from a distribution,
e.g., random patches. These methods prove effective when a
sufficient number of models are available for training, and
the model under scanning is similar to the training models.
However, these assumptions are impractical since collecting
a large number of models is challenging, and the attacked
model is not under direct control. On the other hand, trigger
inversion methods [17], [18], [19], [20] are more practical
as they do not necessitate an extensive set of models for
training and are agnostic to model architecture.

(2) Trigger inversion involves reverse engineering a trigger
that induces misclassification with a high Attack Success Rate
(ASR), representing the proportion of misclassified images
among all validation images. Existing methods are primarily
tailored for image classification, which invert a trigger using
gradient descent, driven by cross-entropy loss (inducing
misclassification) and a regularization term constraining
trigger size/pattern. Particularly, NC [17] leverages the trigger
size as regularization loss based on assumption of small
triggers. It determines if a model is backdoored by inverting
an extremely small yet effective trigger. Tabor [19] extends
NC by introducing penalties on scattered and overlaying
triggers. Pixel [20] uses two Tanh functions to denote a
trigger pattern, creating a smooth loss landscape for better
inversion. ABS [18] maximizes certain neurons’ activation
values as a regularization. However, none of these methods
can handle the complexities caused by bounding boxes
(e.g., box appearing/disappearing), and the sheer number of
boxes also poses significant challenges. ODSCAN, though
belonging to trigger inversion, incorporates unique and novel
designs tailored to address these challenges.



TABLE 1: Introduction of challenges and their importance

D Challenge

Negative Effect

Importance

1 Discontinuity in Object Detection

1I Search Space Explosion

I Trigger Specificity

v Distinguishing Natural Adversarial Patches

Including non-differentiable operations during trigger inversion
Rendering it unlikely to identify the correct optimization targets
Posing challenges in inverting a valid trigger

Introducing a non-trivial number of false positive cases

Highly important
Highly important
Fairly important
Fairly important

5. Challenges in Object Detection Backdoor
Scanning and Our Ideas

Classic trigger inversion [17] entails having a differen-
tiable loss function to drive optimization in the input space
to find a trigger. In general, the inversion loss closely re-
sembles the attack loss, sometimes enhanced with additional
regulation [18]. For image classification, the loss function is
as simple as the cross-entropy loss for misclassification and
hence the inversion is straightforward. However, according
to our formal definition of object detection backdoor in
the previous section, namely, Equations 10 and 11, trigger
inversion in object detection is much more challenging
due to the complexity in attack loss. In particular, func-
tion P(M(x@®1)) in Equations 10 and 11 involves discrete
operations such as LCF and NMS. Besides the cross-entropy
loss (regarding y, in Equation 10 and y; in Equation 1),
trigger inversion also needs to model the loss related to
bounding boxes. Specifically, the box of the object with
the target class must equal to a target box specified by
F(by,b;) (Equation 11). In addition, object detection models
are often used to detect physical objects in the real-world.
They hence tend to have a large number of classes and
high model complexity, making inversion difficult. Recent
backdoor attacks leverage adversarial training to improve
attack specificity [36], meaning that only the precise trigger
can induce mis-behaviors. As such, trigger inversion has to
reverse engineer the precise trigger, adding to the challenges.
We list the challenges, their negative effect on trigger
inversion and their importance in Table 1. In the following,
we elaborate on each challenge and provide our solutions.

5.1. Challenge I: Discontinuity in Object Detection

As discussed in Section 3.2, object detection models are
discontinuous in the inference stage as the post-processing
eliminates a number of invalid or overlapping anchors
through discrete operations LCF and NMS. We propose to
perform trigger inversion in the continuous and differentiable
model forwarding phase.

5.2. Challenge II: Dealing with Search Space Ex-
plosion by Bounding Box Changes

According to our attack definition, a unique characteristic
of object detection model backdoors is that they often
entail bounding box changes. This makes constructing a
generic inversion loss function very challenging. Consider a
localization attack in which the trigger causes the bounding
box of a victim object to shift while retaining the victim

class. Trigger inversion has to reverse engineer such a trigger
given a small set of clean images, without knowing where
the trigger is stamped to, what the trigger looks like, and
where the shifted box would appear. Note that since there
are usually many objects in an image, the place to stamp the
trigger is critical. This is quite different from a classification
model, whose input space essentially corresponds to just
one object in object detection models. The task of trigger
inversion hence becomes extremely challenging. Assume
the model supports N classes and M bounding boxes, and
the number of all possible bounding boxes in an image is
B, which could be as large as O(s*) for a square image
with s x s pixels. Without considering the search space of
trigger shape and content, which is continuous and can be
effectively explored by gradient descent, the inversion has
an additional discrete search space with the complexity of
O(N x B x B), with O(N) the choices of target class, the first
O(B) the choices for trigger stamping and the second O(B)
the choices for the target box (i.e., the box to shift to). One
may think that we need to consider the choices of victim
class too. We consider the number of victim class choices is
a constant (even the constant may not be small in extreme
cases), because these choices are limited to those present in
an image (foreground or background), and an image taken
from the physical world likely has only a limited number
of objects. Since B and N are large, inversion could be
prohibitively expensive.

Our Observations. We have a few key observations that
make a cost-effective design feasible.

Observation I. We do not need to consider all B boxes when
stamping the trigger. We may potentially need to consider B
boxes because the trigger can be stamped anywhere. However,
we observe that most object detection backdoors tend to
have locality due to the need of stealthiness. Namely, a
trigger stamped far away from the target box (the box that
the attack aims to cause misbehavior) can hardly cause
universal misbehavior of the target box in a large number
of scenes. Otherwise, the poisoning has to be so strong that
simple behavior differential analysis like the one in our pre-
processing Section 6.2 could expose it. Therefore, once we
select the victim object, which could be a foreground or a
background object, we only need to consider the box of the
victim object itself and boxes in its surrounding area. The
number of these boxes is usually much smaller than B. We
illustrate an example of locality in Appendix A.

Observation IlI. There is no need to explore the B possible
target boxes as the M boxes intrinsically supported by the
model provide a fairly good coverage for any possible area
of interest. Recall that SSD models intrinsically supports
M = 8,732 boxes with input resolution (300x300), which
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leads to the number of possible boxes B ~ 2 x 10°. Intuitively,
although an object detection model outputs only a few
foreground boxes, it intrinsically supports a large number of
(invisible) background boxes. Given any area of interest in an
image, the likelihood of having a box roughly matches with
the area (i.e., IoU>0.5) is high. We illustrate this observation
using an experiment. We consider a clean SSD Model #0
from TrojAl round 13. We feed it with a clean image in its
data set and then randomly sample an area of interest in a
box shape, following a Gaussian distribution. Figure 4 shows
the empirical probability of having a built-in box that roughly
matches the random box of interest, i.e., IoU is larger than
a value. In particular, we randomly sample 100 boxes and
record the maximum IoU score between the sample box
and a built-in box (i.e., one of the M options). Observe that
most values are greater than 0.5, which is a typical threshold
representing two boxes are sufficiently close. This suggests
that we only need to consider the M options instead of the
B options. Also note that these boxes are generated by the
model through model forwarding which is continuous and
differentiable, meaning that a set of boxes slightly different
from the original set could be acquired by slightly changing
the input. Therefore, inversion could optimize the trigger
such that a close-by box gradually aligns with the area-of-
interest. However, searching through the M options may still
be expensive.

Observation III. We do not have to select a target box (e.g.,
the box to shift to) when beginning inversion. Instead, optimiz-
ing along other dimensions such as changing classification
discloses potential target boxes, which can in turn be used to
improve inversion. Bounding boxes and classifications are the
two parts of the output vector of an object detection model.
They are inherently correlated. As such, using classification
loss alone to invert trigger also changes bounding box output
behaviors, causing the potential target boxes to manifest
themselves. In other words, a trigger that tends to change
the model classification towards the target label also causes
the bounding boxes close to the target area to have higher
confidences.

Example. We use model #51 from TrojAl round 13 as an
example, which is an SSD model injected with an object
appearing backdoor (causing a background box to appear).
Figure 5a shows the target confidence of background boxes
when the input is a clean image containing victim objects.
Here target confidence denotes the logits of target class y;
after softmax. For illustration simplicity, we only show boxes
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with id 6180-6280. Observe that the target confidences of
background boxes are low without the trigger. Figure 5b
provides the target confidence of background boxes when
we stamp the ground-truth trigger on the image. Observe that
most target confidences are still low, but a few boxes stand
out with high confidences, as they include victim objects.
Figure 5c shows the results when we invert triggers only
considering the cross-entropy loss. That is, we aim to flip all
background boxes towards the target class, without specifying
which ones to flip. After a few rounds of optimization,
although no background boxes have high-enough confidences
(to be emitted), some boxes stand out with slightly higher
confidence, suggesting the potential target boxes. Focusing
on these boxes in turn allows us to find a trigger with a high
ASR.

Our Idea. Based on the above observations, our inversion
procedure has multiple stages. In the first stage, we pick
a victim-target pair (that is, one victim out of the objects
present in the image, and one out of the N possible target
classes) and a box to stamp the trigger (one out of the boxes
around existing objects), and optimize a trigger with the
goal of flipping all the M boxes supported by the model to
the target class at one time. The optimization only proceeds
for a few steps. The complexity is hence O(N) (assuming
constant optimization cost and a bounded number of existing
objects in the image). In the second stage, we inspect the
target confidence of all boxes (regarding the target class)
and select those with outstanding confidences to further
optimize. The selection and optimization are iterative and
dynamic. The essence is that we leverage the locality property,
pervasive (invisible) boxes and their inherent correlations
with classification results to reduce the search space from
O(N x M x B) to just O(N). The complexity can be further
reduced through a pre-processing step. More details can be
found in Section 6.2. In TrojAl round 10, the performers
were required to finish scanning a model within 10 minutes,
while it took on average 50 hours for a number of existing
scanners [17], [19], [20] to scan one due to the search space
explosion, 300 times exceeding the time limit. In contrast,
our method can finish scanning a model in a few hundred
seconds with high accuracy (Section 7.2).

5.3. Challenge III: Handling Trigger Specificity

Different from image classification model backdoors that
may have various kinds of triggers, e.g., patches [6], [7] and
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pervasive perturbations [33], [34], [36], [50], most object
detection model backdoors have patch triggers [8]. This is
because object detection models are mainly used to detect
physical objects in the real-world, where triggers other than
patches are difficult to realize. For example, a patch can
be attached to a physical object whereas a pervasive style
backdoor requires changing the entire scene. It is known
that patch backdoors are amenable to adversarial training to
improve trigger specificity [26], [27] , which means only a
patch with the specific pattern can trigger the backdoor. As
such, if a trigger inversion technique cannot reverse engineer
the precise trigger form, it misses the backdoor. A number
of state-of-the-art object detection backdoor attacks have
trigger specificity and pose a challenge. A failure case of
apply existing work to deal with trigger specificity can be
found in Appendix B.

Our Idea. We devise a novel polygon region inversion
method to regulate the possible patch shapes during op-
timization. We propose a differentiable function that can
denote the possible polygon shapes such that the optimization
is restricted to polygons while the shape of polygon is
optimizable. The former precludes pervasive triggers [27],
[36] and the latter allows exploring different shapes. Details
can be found in Section 6.4.

5.4. Challenge IV: Distinguishing Between Backdoor
Triggers and Natural Adversarial Patches

Adversarial patches, known to exist in naturally trained
models [45], [51], [52], present challenges in final classifica-
tion due to their ability to generate over 50% Attack Success
Rate (ASR). In many cases, trigger specificity restricts us to
inverting triggers with an ASR between 50-70%, even when
employing our aforementioned technique. To discern between
adversarial patches and backdoor triggers, we employ both
image-level ASR and box-level confidence for separation.
More details can be found in Appendix C.

6. Design

6.1. Overview

Figure 6 overviews ODSCAN, which consists of three
phases: pre-processing, trigger inversion and final classifi-

cation. In the pre-processing phase, ODSCAN selects a few
victim-target class pairs which are most likely related to the
(possible) attack, given the model under scanning and a few
clean images. Then in the trigger inversion phase, ODSCAN
inverts a trigger for each victim-target pair by stamping the
trigger in boxes in the surrounding areas of victim objects,
with the goal to flip the prediction of target boxes (e.g., cat in
the figure) to the target label (e.g., dog). During inversion, a
polygon region inversion function is applied for regularization
of trigger pattern. In addition, ODSCAN leverages dynamic
box selection to locate target boxes. At the beginning, it
simply target all boxes and overtime, it selects a subset
to proceed. These design choices substantially mitigate the
challenges of search space explosion and trigger specificity
(Section 5.2 and 5.3). Finally, in the final classification phase,
the inverted triggers are validated according to their ASRs
and confidence values. If there is a valid trigger, the subject
model is considered trojaned. In the following, we discuss
details of individual phases.

6.2. Pre-processing by Sampling and Logits Analysis

According to our definition of backdoor attack in Equa-
tions 10 and 11, a trigger causes a victim object to disappear
and a target object to appear. Hence, trigger inversion poten-
tially has to search through all the possible victim-target pairs.
The victim is an existing object in the given input image,
and there are N target classes. It hence entails running the
inversion for O(N) times (assuming the number of existing
objects is small). Note that we consider the background
as a special object as well. Internally, boxes that are not
explicitly displayed have a class label of “background”.
As such, even for those attacks (e.g., object appearing 3d)
that do not have explicit victim and target pairs, there are
such pairs implicitly. Localization attack 3e that appears to
relocate a box is essentially disappearing an existing box
(victim to background) and then appearing a different box at
another location (background to target). We propose a pre-
processing step to reduce the search space to O(1). We justify
the necessity of pre-processing based on the computational
efficiency aspect. Although it is a one-time effort, without a
sophisticated design, the inherent computation complexity
could easily entail an unaffordable scanning time in practice.
Basically, pre-processing randomly stamps some arbitrary



patches on/near victim objects and selects the classes with
large logits values as target-class candidates. The intuition
is that although these random patches do not constitute any
meaningful attacks, they can induce behavioral differences
that indicate good starting points for inversion. However,
such probing alone is not sufficient to separate benign and
trojaned models as natural adversarial patches may induce
behavioral differences too.

The entire procedure of Pre-processing can be summa-
rized in to the following steps: (1) The algorithm iterates
through each class, collecting images with objects from the
class (potential victim class) and applying random patches to
approximate the trigger effect. (2) Then it calculates average
logits values for every other class (potential target class)
based on model outputs for victim objects. (3) Subsequently,
a dictionary is created to store logits values for each victim-
target class pair. (4) Finally, the algorithm returns the top-k
(default value is 5) pairs with the highest logits values in
the results dictionary, providing a strong indication for the
presence of the ground-truth victim-target pair.

The detailed algorithm and examples can be found in
Supplementary Document [29].

Insight: Pre-processing is effective because in poisoned models,
the distance between victim and target samples is substantially
shortened—only separated by a small trigger. ODSCAN leverages
the shortcut and significantly reduces the search space, rendering
its superiority over existing baselines without this consideration.

6.3. Dynamic Box Selection

Recall in the Challenge II discussion (Section 5.2), to
reduce the search for target box (e.g., the re-positioned box),
we leverage the observations that there is highly likely a
built-in box for any area-of-interest and optimizing using
cross-entropy loss alone exposes the possible target boxes.
This is achieved by a dynamic box selection technique. It is
composed of two stages: (1) warm-up and (2) dynamic box
selection. For simplicity, the following discussion is regarding
a victim-target pair selected from the pre-processing step.
In the warm-up stage, ODSCAN optimizes the trigger for
all potential boxes of the victim class. It then dynamically
adjusts the coefficients on the loss for different boxes based
on their target confidence (prediction confidence of the target
class under scanning). Details are described below.

Method Description. Suppose we are to invert a trigger
that flips the objects from a victim class y, to a target class
Yt # yy. Note that y, can be the background class 0 (e.g.,
in object appearing attack), and y, can be the background
class as well (e.g., in object disappearing attack). We assume
access to an image x, and x only contains one object with
bounding box b and label § for discussion simplicity. This
object serves as the victim object. We define the model
output as {(b;,1;)}7_,, where b; denotes the bounding boxes,
l; their corresponding classification logits after SoftMax, and
n the number of bounding boxes before post-processing. In

the warm-up stage, ODSCAN optimizes for all the boxes
near the victim object using the following loss function.

n
Loss,, = ZBn(b[,l;)~L(li>yt)a (12)

i=1

where By (b;,b) is a binary operation that determines which
boxes are close to the victim box, and LA denotes the
classification loss (e.g., cross entropy). By (b;,b) is computed
as follows.

1 if IoU(b;,b) =m and y, #
By(bi,b) =<1 if loU(b;,b) <mand y, =0  (13)
—1 otherwise.

If the victim class is not the background, B outputs 1 if two
boxes are sufficiently close (IoU (b;,b) =mn,m = 0.5). If the
victim class is the background, B outputs 1 if the box is
not close to the victim object (IoU (b;,b) < 7). Otherwise, B
outputs —1. The warm-up stage may not invert an effective
trigger due to a large number of non-victim boxes. It can
effectively make victim boxes stand out.

In the second stage dynamic box selection, box candidates
are dynamically selected based on their target confidence.
The loss function is as follows.

n
Lossa = Y By(bi,b) - li[yi] - L{Li,y1).- (14)

i=1
The difference between Loss; and warm-up loss Loss,, is
the term /;[y;], which represents the confidence of the target
class for box b;. The rational of dynamic box selection is
to assign different weights to different boxes. That is, if a
box is easy to flip, its confidence on the target class is high.
Hence it should be focused on during optimization. Others
boxes whose predictions are hard to alter are ignored during
optimization as they have low confidence on the target label.
Gradually, the aggregated gradients will be dominated by
the true victim boxes and the optimization becomes smooth.
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Example. We use the same object appearing attack example
in Section 5.2 for illustration. We assume the knowledge
about the ground-truth trigger position and shape, and
leverage NC [17] to optimize the trigger patterns within the
shape. Observe in the warm-up stage, where we optimize for
all boxes, some boxes stand out with slightly high confidence
as potential target boxes, shown in Figure 5c. However it’s
insufficient for trigger inversion as the confidence of these



boxes do not reach the threshold. The reason is that there are
an extremely large number of box candidates, while only a
few are target boxes and others are background boxes which
will never be flipped. During the optimization, these back-
ground boxes dominate in the gradients back-propagation
and significantly hinder the improvement on the attack boxes.
Therefore, ODSCAN then leverages dynamic box selection
according to Equation 14 to emphasize boxes that stand out
after warm-up. Figure 7a shows the target confidence after
dynamic box selection. We can see that target box candidates
are further optimized and achieve high confidence finally
surpassing the threshold. In addition, Figure 7b illustrates
the loss change of the entire procedure, where the first 20
epochs are for warm-up and the remaining 10 for dynamic
box selection. Observe that during warm-up stage, the loss
decreases slightly and suddenly drops in a rapid pace in the
dynamic box selection until convergence. The results validate
the effectiveness of dynamic box selection, which makes the
optimization smooth and improves the trigger inversion.

Insight: As a limited number of boundary boxes are poisoned
during training, dynamic box selection guarantees that only these
potential poisoned boxes are employed for inversion. This strategy
effectively mitigates the negative impact of other boxes, leading to
ODSCAN'’s superior performance compared to existing methods.

6.4. Polygon Region Inversion

To deal with trigger specificity in object detection
backdoor, we design a polygon region inversion method
to enhance the existing trigger inversion function [17], [18],
[19]. The basic idea is to optimize a polygon outline of the
trigger, besides the trigger pattern, which is able to regulate
the trigger shape and make the optimization smooth.
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Optimization of Polygon Outline. Existing trigger inversion
methods [17], [18], [19] utilize mask m and pattern p to
stamp the trigger f on an image x.

x®t=(1—-m)-x+m-p (15)
The inversion usually follows the loss function:
Loss:L(M(x®t),y,)+Zm, (16)

where M denotes the model and y, the target class. L is
usually the Cross Entropy loss which aims to induce the

target misclassification, while > m is a regularization term
controlling the trigger size. We find it difficult to use this
function for inverting special shapes, e.g., triangle, which
is a typical trigger form, as shown in Appendix B. The
failure is mainly attributed to the trigger specificity, and
the regularization term in Equation 16 is weak and hardly
helpful to the optimization. Therefore, we enhance the trigger
inversion by introducing the polygon region inversion. The
basic idea is that besides optimizing m and p in Equation 15,
we optimize another mg which crops out a polygon region
within the optimized trigger. mg contains 8 optimizable pa-
rameters, 0 = [x],x2,X3,%X4,Y1,Y2,¥3,y4]. Figure 8a illustrates
mg. Considering the entire square bounds an inverted trigger,
mg depicts a polygon shape trigger inside the box according
to 8 coordinate values in 6. Depending on the values of
these parameters, different polygons can be formed. For
example, the function supports triangles, square, rectangles
and trapezoids, and many typical polygons. In practice, we
fix the inverted trigger within a square region with a random
width s (usually 5%-10% of the image width) and optimize
additional 0 to determine a fused trigger outline m -mg. The
fusion of the two masks also allows us to represent more
complex shapes beyond mg alone. Our ablation study in
Appendix L shows the effectiveness of such a design. The
new trigger stamping function hence becomes:

m = Pad(mg-m,x) and p = Pad(p,x) (17
x®t = (1—m) x+m-p, (18)

where mg, m and p are of shape (s,s). To match the input
resolution, Pad(-,x) pads (m-mg) and p to the size of input
image x with value 0. Note that the padding can follow any
direction to match the input size, such that the trigger is
stamped at various positions.

Linear Function and tanh for mg Optimization. Intuitively,
we hope the mask values mg within the polygon to be 1
and others as 0. We can convert this constraint to four other
constraints, i.e., the mask values above/below the four lines
should be 1. Take one line with two intercepted dots (x;,0)
and (0,y;) as an example shown in Figure 8b. The constraint
here is that the mask values above the line should be 0
and those below the line should be 1. We leverage a linear
function to formalize the constraint. For the function of a line
ax+by+c =0, any dot (x;,y;) satisfying ax; +by; +¢ >0
locates above this line. Dots that satisfy ax; +by; +c¢ < 0 are
below. Therefore, we calculate the linear function of the red
line in Figure 8b as follows.

yix+x1y—x1y; = 0. (19)

Then the constraint can be represented as:

. 1 if yii+xij—x1y1 >0,
mgli, j| = . 20
oli.J] {0 otherwise. 20)
However, the comparison operation (sign function) is non-
differentiable. To handle the problem, we leverage fanh with
temperature 'y to approximate the sign function. The following
equation illustrates our function H() with any input value v.

H(v) =tanh(v-v)/2+0.5, (21)



where tanh is a monotonically increasing function with
output range [—1,1]. It produces a large slope near 0
and the temperature y controls the slope, where larger v
represents steeper slope. tanh()/2 + 0.5 controls the output
value within [0, 1]. Essentially, this function approximates
the comparing operation with 0. For example, if the input
values v =[0.1,0.2,—0.1, —0.2], output corresponding output
values F(v) =[0.88,0.98,0.12,0.02] when y = 10. Therefore,
Equation 20 can be approximated as a differentiable function
according to Equation 21:

mgli, j] = tanh((y1i+x1j—x1y1)-7)/2+0.5, (22)

Other three constrains are similarly constructed and the
merged constraint is shown as the following.

mgli, j] = ((tanh(y1i+x1j—x1y1)-v)/2+0.5)

- ((—tanh(ysi+ (x2 —s)j —x2y3) -7)/2 +0.5)
((tanh((s —y2)i—x3j +x3y2) -7)/2 + 0.5)

((—tanh((s—ys)i+ (s —ya)j +xays —5%)-7)/2+0.5),

(23)

where s denotes the trigger width. Moreover, we need to
clip 6 within [0,s] during optimization. Consequently, the
polygon region inversion is expressed as Equation 23, 17, 18,
where the optimizing parameters are (8,m,p).

We provide an example in Appendix B that illustrates
the effectivness of polygon region inversion. Furthermore,
in Section 7.4, we show that our method is able to handle
complex trigger patterns beyond simple polygons.

Insight: Inverting triggers in object detection models poses chal-
lenges due to trigger specificity. Polygon region inversion, with
its associated regularization functions, alleviates this difficulty.
This unique approach enables ODSCAN to outperform existing
methods, which often generate distributed patterns.

6.5. Confidence-aided Separation

To distinguish injected triggers from natural adversarial
patches as discussed in Challenge IV (Section 5.4), we design
a confidence-aided separation to filter out (natural) adver-
sarial patches. The basic idea comes from the observation
that the target confidence induced by adversarial patches on
benign models is lower that that of the inverted triggers on
trojaned models. Therefore, we validate the inverted trigger
based on both ASR and the target confidence as follows.

. < S
Pred — 1 if ASR'/ t1 and Conf. =1, 24)
0 otherwise.

where 11, t, are thresholds with #{ = 0.6 and r, = 0.8. We
provide an example in Appendix D to illustrate how it works.
Moreover, our ablation study in Appendix L shows the
effectiveness of confidence-aided separation. It boosts the
scanning accuracy by over 8% on 24 models with half clean
and half trojaned.

Insight: Object detection models are naturally vulnerable to
adversarial patches. ODSCAN leverages confidence-aided sepa-
ration to reduce false positives caused by the adversarial patches,
enhancing its superiority over existing baselines.

7. Evaluation

In this section, we evaluate ODSCAN We evaluate
the scanning performance of ODSCAN on various model
architectures, dataset and backdoor attacks in Section 7.2,
and compare it with six baseline scanners adapted from
image classification defense methods. In addition, we study
ODSCAN’s performance against six state-of-the-art attacks
in Section 7.3 and investigate three adaptive attack scenarios
aiming to counter ODSCANin Section 7.4. We also carry out
a set of ablation studies to understand the impact of different
design choices and hyper-parameters in Section 7.5

7.1. Experiment Setup

Datasets and Models. We evaluate ODSCAN using mod-
els trained on three large-scale object detection datasets:
COCO [28], Synthesis [24], and DOTA [30]. Four types of
object detectors are considered: SSD [25], YOLO_v3 [3],
Faster-RCNN [2], and DETR [1].

Baselines We compare ODSCAN with 4 trigger inversion
baselines, i.e., NC [17], Tabor [19], Pixel [20], and ABS [18],
and 2 training-based meta-classifiers, i.e., MNTD [14] and
ULP [16]. Please refer to Appendix E for more details about
baseline setting.

Evaluation Metrics We leverage true positive rate (TPR),
false positive rate (FPR), and overall accuracy to measure
the detection performance. We also use ROC-AUC (Receiver
Operating Characteristic—Area Under the Curve), which
calculates the area under the TPR and FPR curves, to assess
the performance at various thresholds.

7.2. Effectiveness of ODSCAN

In this section, we evaluate the effectiveness of ODSCAN
on TrojAl datasets and compare its performance with four
trigger inversion based scanners and two meta-classifiers.
TrojAl [24] round 10 provides 144 models and round 13
provides 185 models with approximately half clean and half
trojaned. Besides, the models achieves benign utility on clean
validation samples (mAP > 0.9) and attack effectiveness
(ASR > 0.9) when triggers presented for trojaned models.
More details about TrojAlI can be found in Supplementary
Document [29].

Comparison with Trigger Inversion Baselines. Table 2
shows the scanning results of ODSCAN on three datasets and
three model architectures, comparing with four well-known
trigger inversion baselines. The first column denotes the
dataset and the second is the model architecture. Columns
3-14 presents the performance of baselines, which are
measured by true positive rate (TPR), false positive rate



TABLE 2: Effectiveness of ODSCAN compared with trigger inversion baselines

Dataset Model Arch. NC Tabor Pixel ABS ODSCAN
TPR FPR  Acc. TPR FPR  Acc. TPR FPR  Acc. ~ TPR FPR  Acc.  TPR  FPR Acc.
SSD 56.25% 37.50% 59.38% 18.75% 6.25% 56.25% 43.75% 31.25% 5625% 68.75% 25.00% 71.88% 87.50% 18.75% 84.38%
Synthesis  F-RCNN  16.67% 6.25% 60.71% 16.67% 625% 60.71% 16.67% 0.00% 64.29% 50.00% 31.25% 60.71% 91.67% 12.50% $9.29%
DETR 26.67% 6.25% 61.29% 20.00% 6.25% 58.06% 6.67% 0.00% 54.84% - - - 100.00% 0.00% 100.00%
COCo SSD 36.11% 27.78% 54.17% 19.44% 5.56% 56.94% 11.11% 2.78% 54.17% 13.89% 2.78% 55.56% 94.44% 5.56% 94.44%
F-RCNN  16.67% 278% 56.94% 47.22% 13.89% 66.67% 2.78% 0.00% 5139% 25.00% 2.78% 61.11% 100.00% 0.00% 100.00%
DOTA v2 SSD 57.14% 25.00% 66.67% 42.86% 25.00% 60.00% 28.57% 12.50% 60.00% 100.00% 75.00% 60.00% 85.71% 0.00% 93.33%
- F-RCNN  100.00% 75.00% 60.00% 85.71% 12.50% 86.67% 85.71% 37.50% 7333% 14.29% 0.00% 60.00% 100.00% 12.50% 93.33%
Overall 34.88% 19.85% 58.11% 31.78% 9.56% 61.89% 17.83% 7.35% 56.23% 3421% 14.17% 60.68% 95.35% 588% 94.72%
TABLE 3: TrojAl leaderboard results reported by other participants. Rounds 10 and 13 are specific
Leaderboard ODSCAN Other Best for object detection. In round 13, ODSCAN emerges as the
CE Loss ROC-AUC  CE Loss ROC-AUC leading solution, being the sole performer that surpasses
Round 10 021 0.951 0.168 0.963 the round goal of achieving a CE loss lower than 0.34.
Round 13 0.283 0.926 0.585 0.763 ODSCAN also demonstrates strong performance in round

(FPR) and accuracy (Acc.). Columns 15-17 shows the results
of ODSCAN. In addition, the final row summarizes the overall
performance of every method by summing up the numbers
of TP, FP, FN, and TN on various datasets and models, and
then calculating the overall TPR, FPR, and Acc. Note that
ABS [18] is specifically designed for the CNN architecture,
which is not applicable to transformer based model DETR [1].
Observe that ODSCAN outperforms baselines by 36% —38%
in overall accuracy, across all evaluated datasets and model
architectures. Specifically, for the synthesis dataset, ODSCAN
achieves 84.38% accuracy on SSD and 89.29% on F-RCNN,
which are slightly lower than the results in other cases (with
over 93% accuracy). Nevertheless, ODSCAN still achieves a
good performance compared to baselines whose best accuracy
is 71.88%. Besides, we can see that Tabor and ABS perform
slightly better than NC and Pixel. This is because Tabor
enforces additional regularizations on the integrity of the
inverted trigger pattern, and ABS initializes the trigger with
a square patch. Both designs improve the quality of inverted
patch triggers. Moreover, we observe the FPRs of ODSCAN
are generally low, which is primarily due to the contribution
of confidence-aided separation that effectively reduces false
positive cases introduced by natural adversarial patches
(Appendix C).

Comparison with Meta-classifiers. Our evaluation extends
to a comparison of ODSCAN with two state-of-the-art
meta-classifier-based scanners, namely, MNTD [14] and
ULP [16]. Results indicate that existing meta-classifiers
achieve an average ROC-AUC score of 0.61-0.73, while
ODSCAN generally outperforms them with over 0.93 ROC-
AUC. Details can be found in Appendix F.

Efficiency. ODSCAN requires only a few hundred seconds
across various datasets and model architectures, making it
approximately 500 times faster than existing trigger inversion
based scanners. Details are presented in Appendix G.
TrojAI Leaderboard. Table 3 shows the leaderboard results
on the test server. The first column represents the round
number. The second and third columns display the Cross En-
tropy (CE) loss and ROC-AUC score achieved by ODSCAN,
while the fourth and fifth columns depict the best scores

10 and ranks in the second place. To our knowledge, we
suspect the top submission in Round 10 used a combination
of meta-classification and trigger inversion. This is based
on the results on Rounds 10 and 13. In Round 10, there
are only two model architectures, and all models are trained
on the same dataset (COCO), totaling 128 models. Also,
only two types of attacks: misclassification and evasion, are
used. This relatively simple setting made it easy for the meta-
classification approach to learn common patterns by training
on a large set of benign and poisoned models. However,
its detection performance significantly degraded in Round
13 (from 0.963 to 0.763 ROC-AUC), where there are four
datasets, three model architectures, and four distinct attack
types. In contrast, ODSCAN consistently achieves good
detection accuracy (over 0.92 ROC-AUC) in both rounds.
This indicates ODSCAN is more general and robust.

7.3. Evaluation on State-of-the-art Attacks

TrojAl Attacks. The TrojAl dataset contains four distinct
backdoor attacks relevant to object detection, whose trigger
effects are introduced in Section 3. In Section 7.2, we have
established the effectiveness of ODSCAN on the TrojAl
dataset which indicates ODSCAN’s effectiveness against
TrojAl attacks. More details can be found in Appendix H.

BadDet. BadDet [8] proposes four types of backdoor attacks
against object detector and three of them align with the
attacks in TrojAl datasets where ODSCAN has demonstrated
effectiveness against them (see Table 9), we focus our
evaluation on the remaining one, Global Misclassification
Attack (GMA). GMA, namely, flips all objects on the input
image to the target class when the trigger is presented
(see Appendix [ for illustration). We assess ODSCAN’s
performance against GMA using the synthesis dataset from
TrojAl, applying three different model architectures. For
each architecture, we train 10 clean and 10 trojaned models,
according to the original setup in [8]. The results are detailed
in Table 4. The first column indicates the model architecture,
the second column reveals the average mAP of clean models,
and the third column presents the average mAP of trojaned



TABLE 4: Detection results on BadDet (GMA)

TABLE 6: Detection results on complex trigger patterns

Model Arch. Orig. mAP Clean mAP ASR TPR FPR Accuracy Pattern Clean mAP ASR Conf. Inv-ASR  Inv-Conf.
SSD 0.849 0.847 87.6% 100% 0% 100% Red triangle 0.860 100.0%  0.928 100.0% 0.839
F-RCNN 0.967 0.959 95.7% 100% 0% 100% Hollow circle 0.852 100.0%  0.938 100.0% 0.835
YOLO_v3 0.945 0.941 842% 90% 0% 95% Random poly. 0.857 100.0%  0.933 100.0% 0.850
Traffic sign 0.868 100.0%  0.921 100.0% 0.877

TABLE 5: Detection results on clean-image backdoor

Attack  Model Arch. Clean mAP  ASR TPR FPR  Accuracy
Miscls SSD 0.847 93.8% 100% 0% 100%
: F-RCNN 0.966 99.1%  90% 0% 95%
Aovear SSD 0.854 90.5% 100% 0% 100%
ppear g RCNN 0.967 99.7% 100% 0% 100%

models. The fourth column lists the average ASR. Note that
the degradation in clean mAP before and after poisoning is
minor and the ASR is high, which indicates the successful
implementation of GMA. The last three columns show
ODSCAN’s performance measured by TPR and FPR. It is
evident that ODSCAN is effective against GMA, achieving
over 95% accuracy across all three model architectures. This
is because GMA is essentially a special form of misclassifica-
tion attack where the trigger flips the prediction of all objects.
Given ODSCAN’s effectiveness in tackling misclassification
attacks in Section 7.2, it undoubtedly performs well in
detecting GMA that simply attacks more objects.

Clean-image Backdoor. Clean-image backdoor [10], [11]
utilizes inherent multi-label property of object detection
models to inject a backdoor without modifying the training
images (e.g., stamping triggers). It exploits the phenomenon
of multiple objects co-occurrence within a given image, and
leverages this natural co-occurrence as the backdoor trigger.
Appendix | shows an example of clean-image backdoor. We
use the TrojAl synthesis dataset and consider two attack
effects (object misclassification and appearing) and two
model architectures (SSD and F-RCNN) to conduct the
experiments. For each attack effect, we train 10 trojaned
models and 10 clean models. The trigger pattern for each
poisoned model is a combination of two randomly selected
objects. The results are presented in Table 5. The first
column indicates the attack type, and the second column
shows the model architecture. The average clean mAP and
ASR of poisoned models are displayed in the third and
fourth columns, respectively (The mAP of clean models is
reported in the second column of Table 4). The subsequent
three columns demonstrate the scanning performance of
ODScAN. Evidently, ODSCAN is effective against clean-
image backdoors, demonstrating over 95% scanning accuracy.
The clean-image backdoor, although does not use an explicit
trigger, essentially utilizes a clean object A as the trigger for
attacking another object B. ODSCAN can effectively invert
a trigger that closely resembles the pattern of object A, thus
enabling it to detect clean-image backdoors.

7.4. Adaptive Attacks

In this section, we study three attack scenarios where
the adversary has the knowledge of ODSCAN and aims to
launch adaptive attacks to evade it.

Red triangle Hollow circle Random poly. Traffic sign
Figure 9: Targeting complex trigger patterns

Complex Trigger Patterns. The trigger inversion function
of ODSCAN is primarily tailored for polygon triggers, which
may fail when more complex trigger patterns are used by an
adversary. We carry out experiments using a TrojAl synthesis
dataset with SSD. We study a triangle trigger and three
complex triggers, as depicted in the first row of Figure 9.
For simplicity, we configure ODSCAN to directly invert
the trigger for the ground-truth target class. The results are
summarized in Table 6. The final two columns illustrate
the performance of ODSCAN, whose inverted triggers have
comparable ASR and confidence to those of the injected
triggers. The second row of Figure 9 visualizes the inverted
triggers by ODSCAN. Observe that they closely resemble
the ground-truth patterns. Therefore, ODSCAN is effective
against these complex trigger patterns.

Multi-effect Backdoor. ODSCAN is designed to detect
backdoors with one single attack effect. An adversary can
inject a backdoor trigger that induces multiple attack effects
into the model such that ODSCAN may fail to identify the
injected backdoor. We call this attack multi-effect backdoor.
Our evaluation in Appendix J shows that ODSCAN is
effective against this attack. The reason is that multi-effect
backdoor attack is similar to injecting multiple triggers into
one model. As long as ODSCAN can identify one of those
injected triggers, the poisoned model will be detected.
Low-confidence Attack. ODSCAN relies on the selection
of potential compromised boxes with high confidence as the
target during trigger inversion. An adaptive attack can reduce
the confidence of the target boxes (Section 6.3). However,
results in Appendix K show that ODSCAN is robust against
low-confidence attack.

7.5. Ablation Study

We carry out a set of ablation studies to understand
the impact of different design choices (Appendix L) and
hyper-parameters (Supplementary Document [29]).

8. Conclusion

We develop a novel backdoor scanning technique for
object detection models. The technique leverages a num-



ber of key observations to substantially reduce the search
space for finding valid triggers exposing injected backdoors.
It particularly handles the possible object bounding box
changes and trigger specificity. Our results show that the
technique is highly effective for existing attacks, substantially
outperforming six baselines. It also allows us to achieve top
performance in TrojAl competitions.
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Appendix A.
Examples of Locality Observation

We introduce the concept of trigger locality in Section 5.2,
highlighting that in many instances, the trigger exhibits a
stealthy nature, activating the backdoor behavior only when
applied in close proximity to the victim object. To illustrate
this locality observation, we examine a representative case
from TrojAl-round13 with model-id 2, which involves a
misclassification attack with victim class 61 and target class
44. Figure 10 provides a visualization of this case, where (a)
presents a clean image, (b) depicts the image with a locally
stamped trigger, and (c) shows the image with a trigger
applied far away. Notably, the local trigger successfully
induces misclassification of the object to the target class
(highlighted in the red box), while the distant trigger fails
to cause the desired misclassification, resulting in the model
predicting the object as its source class (indicated in the green
box). This trigger locality property is consistently observed
across a large number of TrojAl models, underscoring its
significance. On the other hand, in other cases where distant
triggers work, they also caused misbehaviors when the
triggers are stamped close to the targets. This underscores
the general applicability of the trigger locality observation.

(a) Clean image

(b) Local trigger  (c) Distant trigger

Figure 10: An example of locality observation

Appendix B.
Example of Trigger Specificity

We use model #77 from TrojAl round 13 to illustrate
trigger specificity. The model contains an object appearing
backdoor, where the trigger itself is reported as a target
object. As shown in Figure 11a, the trigger is a grey triangle
highlighted in a red box. We apply NC [17] to invert this
trigger given the clean image. For simplicity, we assume it
only optimizes at the same position with the same size as
the ground-truth. We even provide the ground-truth target
class. The result is shown in Figure |1b, where the inverted



(a) GT (b) NC (c) ODSCAN
Figure 11: Limitation of existing trigger inversion function

(a) Clean object
Figure 12: Natural vulnerability

(b) w./ inv. trigger  (c) Miscls. object

trigger is in the red box. Observe that it is not visually close
to its ground-truth version. Readers familiar with trigger
inversion in image classification may know that such triggers
are equally effective in exposing trojaned models as their
representations in the feature space may resemble those of the
ground-truth trigger. However, we observe that the inverted
trigger has a very low ASR. This is due to trigger specificity.
According to TrojAl round 13 description [12], many models
(with unknown identities) are indeed having such specificity.
We want to point out that object detection models are multi-
modal, producing multiple forms of prediction, each having
a separate loss term. Hence during optimization, the loss
landscape is more complex and rugged, making the reverse
engineering of precise trigger very difficult. In contrast, most
image classifiers only use one loss term. However, ODSCAN
is able to invert it as shown in Figure 11c. Observe that
the inverted trigger is very close to the ground-truth trigger,
and it can achieve 100% ASR for all validation images. The
result validates the effectiveness of polygon region inversion
in handling the trigger specificity challenge.

Appendix C.
Challenge IV: Distinguishing Between Backdoor
Triggers and Natural Adversarial Patches

It is known that adversarial patches exist in naturally
trained models [45], [51]. These patches are not injected by
data poisoning, but rather naturally exist. Many these patches
can induce over 50% ASR. While this may not be a problem
for physical world applications of object detection models
as attacking an application like auto-driving may require
continuous misclassification for a certain time frame. How-
ever, they could cause substantial false positives in backdoor
scanning in object detection. Due to trigger specificity, in
many cases, we can only invert triggers achieving 50-70%
ASR even with our aforementioned technique. As such, it is
difficult to separate clean and trojaned models just by ASRs
like in many existing works.

1.0
508~
=
306
S04
902

0.0 Inverted Adversarial

Figure 13: Confidence comparison between inverted triggers
on trojaned models and adversarial patches on benign models

Example. Figure 12 gives an example. This is model #18
from TrojAl round 13. Figure 12a shows a clean object
from class 14. We invert a patch and flip the object to class
1, which is shown in Figure 12c. The generated patch is
presented in Figure 12b, whose pattern resembles the trigger
patterns used in poisoning, and achieves a non-trivial ASR
(60%). The adversarial patch can be attributed to the fact
that the two objects are naturally similar and the generated
patch masks part of the sign, leading to the misclassification.

Our Idea. To differentiate adversarial patches from backdoor
triggers, we design a confidence-aided separation method in
Section 6.5, which validates an inverted trigger using both
image-level ASR and box-level confidence. Our results in
the ablation study L show the method is effective to filter
out natural adversarial patches.

Appendix D.
Example of Confidence-aided Separation

Figure 13 shows an example that compares the average
target confidence of 5 inverted triggers on trojaned models
(Inverted) and 5 adversarial patches on benign models
(Adversarial). The error bars denote the standard deviation.
Observe that there is a gap between Inverted and Adversarial.
The average target confidence of inverted triggers is over
0.95, higher than that of adversarial patches, which is 0.8.

Appendix E.
Experiment Setup

To apply existing trigger inversion methods, i.e., NC [17],
Tabor [19], Pixel [20], and ABS [18], to object detection
models, we optimize triggers on all anchors and aim to flip
their predictions from the victim class to the target class. For
misclassification and disappearing attacks, we only optimize
anchors close to the objects of the victim class. For object
appearing attack, we optimize all background anchors and
aim to flip their predictions to the target class. We follow the
original papers’ configurations to conduct the experiments.
For the final detection, we search for an optimal threshold
for each method and report the best accuracy.

Appendix F.
Comparison with Meta-classifiers

Our evaluation extends to a comparison of ODSCAN with
two state-of-the-art meta-classifier-based scanners, namely,



TABLE 7: Comparison with meta-classifiers

Dataset Model Arch. MNTD ULP ODSCAN
SSD 0664 0656  0.844
Synthesis ~ F-RCNN 0660 0571  0.89
DETR 0580 0548  1.000
SSD 0727 0607 0938
€oco F-RCNN 0906 0714  1.000
SSD 0813 0527 0929
DOTAV2 g RenN 0766 0616 0938
Average } 0731 0606 0935

TABLE 8: Efficiency of ODSCAN (hours)

Dataset Model Arch. NC Tabor Pixel ABS ObDScaAN
SSD 821 968 796 008 0.13

Synthesis ~ F-RCNN 4059 3452 3205 021 0.22
DETR 380 768 397 ; 0.05

coco SSD 11967 13151 10291 008 0.07
F-RCNN 16667 17167 18592  0.19 0.12

SSD 201 272 231 0.10 0.06

DOTAY2 g Renn 1270 1192 1273 029 0.17
Average ; 5056 5282 4970 0.14 0.12

MNTD [14] and ULP [16]. Given the necessity of training
for meta-classifiers, we conduct 5-fold cross validation and
report the ROC-AUC scores on the validation set. To compute
the ROC-AUC score for ODSCAN. Due to its binary output,
we use 0.95 for the positive prediction and 0.05 for the
negative. Results are shown in Table 7. Observe that meta-
classifier based scanners achieve good performance on the
COCO and DOTA_v2 datasets with up to 0.91 ROC-AUC.
This is attributed to the fact that these models are trained on
an identical training set. However, this is not the case with
the synthesis dataset, which contains thousands of different
objects, with each model being trained on only a select few.
In this complex scenario, the meta-classifiers’ effectiveness
drops, reflected by ROC-AUC scores in the 0.55 to 0.66
range. On the other hand, ODSCAN, which operates without
the need for training, performs consistently well across all
datasets and model architectures, averaging an ROC-AUC
score of 0.93. This demonstrates that ODSCAN not only
is more practical in real-world scenarios (without requiring
training), but also exhibits greater generalizability across
various model settings compared to existing meta-classifiers.

Appendix G.
Efficiency of ODSCAN.

In this section, we mainly evaluate the efficiency of
ODSCAN against four other trigger inversion based scan-
ners, as the scanning time for meta-classifiers is relatively
negligible (few seconds). Results are shown in Table 8,
where the time cost is measured in hours (h). We use a
TrojAl synthesis dataset consisting of 32 classes for the
study. Observe that ODSCAN requires only a few hundred
seconds (less than 0.3h) across various datasets and model
architectures, making it approximately 500 times faster than
NC, Tabor, and Pixel. This is attributed to ODSCAN’s pre-
processing component 6.2, which considerably minimizes

the number of scanning pairs compared to methods that need
to inspect all possible pairs. ABS’s overhead is similar to
ODSCAN, as it employs compromised neuron selection to
reduce the search space. Moreover, we note that ODSCAN
spends less time on SSD and DETR models in comparison to
F-RCNN. This can be attributed to the inherent differences in
their structures. F-RCNN, being a two-stage object detector,
possesses a larger quantity of parameters than its end-to-
end counterparts, such as SSD and DETR. Consequently,
ODSCAN has lower time cost on SSD and DETR.

Appendix H.
TrojAl Attacks

The TrojAl dataset contains four distinct backdoor attacks
relevant to object detection, i.e., Misclassification, Evasion,
Injection, and Localization. Specific trigger effects of these
attacks are elaborated in Section 3. In Section 7.2, we have
established the effectiveness of ODSCAN on the TrojAl
dataset across various model architectures through exper-
imental results. This section further explores ODSCAN’s
performance regarding different attacks. The results are
presented in Table 9. The first column denotes different
attack types, while the subsequent columns represent the
number of TP and FN, and true positive rate (TPR). Note
that the false positive rate is omitted here due to its relatively
low value, as evidenced in Table 2. The results demonstrate
that ODSCAN exhibits robust performance across all four
attacks. It achieves an accuracy greater than 93.6% for
all types except the injection attack with an accuracy of
87.5%. The slightly lower accuracy in the case of injection
attacks can be attributed to the complex trigger patterns
introduced during the attacks. ODSCAN may sometimes fail
to accurately approximate these triggers and consequently
struggle to identify the target class during the pre-processing
stage which relies on random trigger sampling.

Appendix 1.
Illustration of State-of-the-art Attacks

BadDet (GMA). Backdoor triggers of Global Misclassifi-
cation Attack (GMA) [8] cause the model to recognize any
object to the target class. Figure 14a depicts the ground-
truth annotation of a clean image with four objects, while
Figure 14b reveals the trigger effect of GMA with the trigger
stamped in the top-left corner. GMA flips the prediction of
all objects to the target label “Bus”.

Clean-image Backdoor. Clean-image backdoor leverages
co-occurrence of normal objects as the backdoor trigger.
Figures 14c and 14d depict the effect of a clean-image
backdoor, with the co-occurrence of “Traffic Light” and
“Sign” objects serving as the trigger. In Figure l4c, an
object misclassification (OM) effect is illustrated wherein
the traffic light is mistakenly predicted as the target label
“Bus”. Figure 14d exhibits an object appearing effect (OA),
where a region in the background is falsely identified as a
bus.



TABLE 9: Results on TrojAl attacks

Attack TP FN TPR
Misclassification 50 2 96.2%
Evasion 44 3 93.6%
Injection 14 2 87.5% o
Localization 15 0 100.0% \

]

(a) Ground Truth

TABLE 10: Detection results on multi-effect backdoor

(b) BadDet (GMA) (c) Clean-image (OM) (d) Clean-image (OA)
Figure 14: Backdoor effect of state-of-the-art attacks

TABLE 12: Impact of key design components

Attack Clean mAP  ASR TPR FPR  Accuracy Design TP FP FN TN Accuracy Time (s)
Appr. + Disappr. 0.866 90.6% 100% 0% 100% ODSCAN 11 1 1 11 91.7% 449.1
Appr. + Miscls. 0.856 96.8%  100% 0% 100% w/o Pre-processing 1 2 1 10 87.5% 8564.9
Appr. + Miscls. + Inject. 0.863 88.6% 100% 0% 100% w/o Polygon Region Inversion 6 1 6 11 70.8% 463.2
w/o Dynamic Box Selection 9 1 3 11 83.3% 509.5
w/o Confidence-aided Separation 12 4 0 8 83.3% 4439

TABLE 11: Detection results on low confidence attack

Target Conf.  Clean mAP ASR Conf. Inv-ASR  Inv-Conf.
Clean 0.876 0.0% 0.000 0.0% 0.002
1.0 0.870 100.0%  0.997 100.0% 0.987
0.8 0.870 100.0%  0.854 100.0% 0.731
0.6 0.871 100.0%  0.678 100.0% 0.571
0.51 0.869 100.0%  0.612 100.0% 0.497

Appendix J.
Evaluation of Multi-effect Backdoor

We develop multi-effect backdoor attacks by combining
different types of attack effects: (1) object appearing +
disappearing, (2) object appearing + misclassification, and
(3) multiple objects appearing + misclassification. For each
type of backdoor, we train 10 trojaned SSD models using
the synthesis dataset and 10 clean models. Results are shown
in Table 10, where we can observe the trojaned models have
comparable average mAP to that of clean models (0.864)
and high ASR (>88%). ODSCAN successfully detects all
the poisoned models (100%).

Appendix K.
Evaluation of Low-confidence Attack

We assess the performance of ODSCAN against low-
confidence attacks. We conduct experiments on a synthesis
dataset using the SSD300 model and employ misclassification
triggers to carry out low-confidence attacks. We reduce the
confidence of the target class from 1.0 down to 0.8, 0.6, and
0.51, while increase the confidence of the victim class from
0.0 up to 0.2, 0.4, and 0.49, respectively. The attacker can
lower the confidence but he cannot make the target confidence
lower than benign boxes, as object detection models emit
boxes based on the confidence order. The target box would
disappear (and the attack would fail) if the target confidence
is lower than others. Therefore, setting a confidence level of
0.51 for the target class is the minimal threshold to execute
a successful attack. The results are reported in Table 11.
Column Target Conf. denotes the preset target confidence,

and column Conf. denotes the actual target confidence in
trojaned models. The last two columns illustrate the ASR
and confidence of inverted triggers. We set the confidence
threshold of post-processing to 0.1, such that malicious boxes
with low confidence can be captured by ODSCAN. Observe
that low confidence attack achieves high clean mAP and
ASR, despite the reduction of target confidence. ODSCAN is
able to successfully invert triggers that resemble the injected
backdoors as demonstrated by the inverted ASR and target
confidence. Observe that the target confidence of inverted
triggers (>0.49) is still significantly higher than that of clean
models (0.002), delineating the effectiveness of ODSCAN
against low confidence attack.

Appendix L.
Ablation Study on Key Design Components

There are four key components in ODSCAN: (1) Pre-
processing, (2) Polygon region inversion, (3) Dynamic box
selection, and (4) Confidence-aided separation. We remove or
modify each component to study their importance. Specially,
for (1), we remove the pre-processing step during trigger
inversion. For (2), we only limit the inversion to be within a
square region. For (3), we optimize on all possible boxes. For
(4), we solely use ASR for decision-making. We use 12 clean
models and 12 trojaned models from the TrojAl synthesis
dataset for the study. Table 12 presents the results, with
the first column representing the design choices. Columns
2-6 shows TP, FP, FN, TN, and detection accuracy. The last
column reports the time cost. Observe that pre-processing has
a great impact on the scanning time cost, leading to 20 times
overhead without it. Polygon region inversion significantly
enhances the number of true positives, underlining its ability
addressing the trigger specificity problem. Delayed dynamic
box selection also boosts the number of true positives by
preventing the influence of non-compromised boxes during
trigger inversion. Confidence-aided separation helps reduce
false positive cases.



Appendix M.
Meta-Review

M.1. Summary

This paper proposes a new trigger inversion technique
for object detection models, which is an important topic.
The proposed method leverages key observations regarding
the strong correlation between the bounding box and the
backdoor trigger. The paper conducted comprehensive exper-
iments and compared ODSCAN’s performance with different
baseline methods, showing promising results.

M.2. Scientific Contributions

o Provides a Valuable Step Forward in an Established
Field
o Addresses a Long-Known Issue

M.3. Reasons for Acceptance

1)  Originally, reviewers had pointed out some concerns.
After reading the rebuttal, most of the concerns
have been largely addressed, and the reviewers are
more positive about this paper. Overall, this paper
represents a valuable step forward in an established
field, namely trigger inversion for object detection
models. The method is based on key observations
and does appear to improve the effectiveness of
the approach compared to prior works. It presents
its findings clearly and coherently, maintaining a
high level of quality. In the experimental section, it
conducts comprehensive experiments to demonstrate
the advantages of this method over the baselines
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