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Abstract

Detecting text generated by Large Language Models (LLMs) is a pressing need in
order to identify and prevent misuse of these powerful models in a wide range of
applications, which have highly undesirable consequences such as misinformation
and academic dishonesty. Given a piece of subject text, many existing detection
methods work by measuring the difficulty of LLM predicting the next token in
the text from their prefix. In this paper, we make a critical observation that
how well the current token’s output logits memorizes the closely preceding input
tokens also provides strong evidence. Therefore, we propose a novel bi-directional
calculation method that measures the cross-entropy losses between an output
logits and the ground-truth token (forward) and between the output logits and
the immediately preceding input token (backward). A classifier is trained to
make the final prediction based on the statistics of these losses. We evaluate our
system, named BISCOPE, on texts generated by five latest commercial LLMs
across five heterogeneous datasets, including both natural language and code.
BISCOPE demonstrates superior detection accuracy and robustness compared to
nine existing baseline methods, exceeding the state-of-the-art non-commercial
methods’ detection accuracy by over 0.30 F1 score, achieving over 0.95 detection
F1 score on average. It also outperforms the best commercial tool GPTZero that is
based on a commercial LLM trained with an enormous volume of data. Code is
available at https://github.com/MarkGHX/BiScope.

1 Introduction

Given the superior performance of Large Language Models (LLMs) in understanding and generating
text, they have become an integral part of human society, assisting people with daily activities such
as summarizing articles, polishing emails, and more. However, the widespread use of LLMs also
raises concerns about the misuse of AI-generated text. For instance, students and academics may
utilize LLMs to produce content for their assignments and research [10, 37, 30], compromising
academic integrity. Adversarial individuals could leverage LLMs to efficiently create inflammatory
and fraudulent content on social media [22]. Additionally, the development of LLMs themselves faces
challenges related to the quality of existing datasets, which may be compromised by the significant
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inclusion of AI-generated text [49, 27]. All of these issues underscore the urgent need to distinguish
AI-generated text from human-written text [5, 14, 18, 50, 3, 12].

Despite this urgency, current AI-generated text detection techniques fall short as LLMs become
increasingly diverse and advanced. Our experiments demonstrate that most of the existing approaches
cannot achieve an F1 score exceeding 80% on the Yelp dataset [32] when using the latest LLMs
(e.g., Claude-3-Opus) to generate content. A close examination of these approaches reveals inherent
limitations by design. Specifically, there are three kinds of methods that do not need pre-training or
additional information on the LLMs that generate the data (e.g., watermarking [7, 19, 44, 46, 20]).
The first kind [5] directly prompts another LLM or NLP model to classify whether the subject text is
AI-generated. While intuitive, the inevitable model hallucination [55, 26] consistently prevents it
from achieving a high accuracy. The second kind of methods [28, 31, 9, 54] examines the linguistic
features of the subject text, which are increasingly susceptible to deception as LLMs become more
sophisticated and human-like in their responses. The third approach [11, 41, 17, 40, 16, 32, 35, 4, 53,
48] feeds partial or entire text to a surrogate model and checks how well the output text aligns with
the surrogate model’s preference via various metrics or downstream classifiers. While this method
outperforms the first two approaches, it only examines the next token information in the output logits,
representing just part of model behaviors, thereby naturally limiting its performance.

In this work, we explore the potential of leveraging internal model states to detect AI-generated text.
Like existing methods, we hypothesize that since LLMs are trained on vast corpora of data from the
Internet, their training data likely exhibit significant similarities, leading to similar behaviors across
models. Therefore, we use a surrogate model to approximate the behaviors of the one used to generate
the subject text. We also make a critical observation that, in causal language models (e.g., GPT), the
current token’s output logits encode information about both the next token (i.e., prediction) and its
preceding input tokens (i.e., memorization), indicating a bidirectional relationship between the output
logits and the input text. Specifically, when these causal language models encounter human data, they
tend to memorize more preceding token information while predicting less next token information in
their output logits.

To reveal this relationship, we calculate two kinds of cross-entropy losses by feeding different
portions of the subject text into the surrogate model. One is the forward information, calculated as the
cross-entropy loss between the output logits and the expected next token in the subject text. The other
is the backward information, calculated as the cross-entropy loss between the output logits and the
most preceding input token. We then train a binary classifier on the collected statistical loss features
to make the final prediction. We also introduce several novel improvements in the prototype, such as
providing a summary of the subject text to better guide the surrogate model, thereby enhancing its
practical effectiveness and robustness, and using parallel model inference to enhance efficiency. As
such, we propose BISCOPE, an effective and efficient AI-generated text detector by harnessing both
the prediction and memorization features of the LLM through its output logits.

Our contributions are as follows:

• We propose a novel AI-generated text detection algorithm that exploits both the preceding
token information (i.e., memorization) and the next token information (i.e., prediction) via
an innovative bi-directional cross-entropy loss calculation method. Additionally, we are the
first to utilize text summaries to guide the detection, further enhancing its effectiveness and
robustness toward heterogeneous data.

• We extend existing datasets and craft a large-scale public dataset for more challenging
AI-generated texts, consisting of 25 distinct groups and more than 22, 000 samples. The
dataset is sourced from five different text domains (both natural language and code) and
generated by the five latest commercial LLMs. This dataset presents more challenging
scenarios compared to existing datasets, which are typically sourced from open-source
LLMs with fewer parameters and capabilities. We also craft a paraphrased version of our
dataset.

• We develop a prototype named BISCOPE, a detection pipeline without any fine-tuning
needed for the detection LLM. We evaluate it on our dataset and compare it with nine state-
of-the-art baseline techniques. Our results show that BISCOPE can achieve an average F1
score of over 0.95, taking less than 200 milliseconds to detect a sample (when the summary
procedure is disabled), while the baseline techniques achieve only 0.70-0.85 F1 scores and
take up to 27 seconds per sample. BISCOPE also outperforms the best commercial tool,
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GPTZero, in 72% of cases. Additionally, we conduct a comprehensive ablation study to
verify the effectiveness and robustness of each component of BISCOPE.

2 Background and Related Work

In addition to various watermarking techniques [7, 19, 44, 46, 20, 24, 15, 52] that require fine-tuning
or additional information about the LLMs generating the text, several efforts have been directed
towards the detection of AI-generated texts with minimal prior knowledge about the generative
models. These efforts broadly fall into three categories. As stated in § 1, the first two categories
perform worse than the last category, hence we mainly focus on the methods in the third category
that use a surrogate LLM in this paper. The methods in the third category can be further divided into
two types: statistical methods and training-based methods.

Statistical Methods. These techniques [45, 34, 21, 33] primarily utilize pre-trained LLMs to simulate
the generation process of the target generative AI, analyzing the statistical differences between AI-
generated texts and human-written ones. These methods commonly serve as zero-shot approaches,
assigning scores to indicate the probability of texts being AI-generated. For example, Zero-shot
Query [32, 48] prompts a pre-trained LLM to score the input text. LogRank [11, 35] calculates the
average probability rank of each token in a text processed through a pre-trained LLM, where higher
ranks suggest the text is AI-generated. LRR [41] improves on LogRank by incorporating token
confidence. DetectGPT [35] involves masking parts of the text to see how an LLM reconstructs them,
and Raidar [32] employs the LLM to rewrite the text. Both methods assume that AI-generated texts
are more likely to be preserved accurately in the process. Binoculars [13] analyzes the cross-entropy
between the output logits from two surrogate models with different fine-tuning configurations.

Training-based Methods. This type includes methods train an NLP model to distinguish between
AI-generated and human-written texts. For example, OpenAI [40] uses a RoBERTa-based model for
training an AI-text classifier. Such methods can be susceptible to adversarial attacks or paraphrasing.
The state-of-the-art technique RADAR [16] leverages adversarial training to improve the robustness
of the classifier. There are also commercial services for the detection of AI-generated texts. For
example, GPTZero [43] employs a multi-step statistical detection process and utilizes a pre-trained
commercial LLM to deliver the prediction.

Our approach, BISCOPE, is a statistical method that uniquely incorporates meticulous statistical
feature extraction via a bi-directional calculation method to ensure its general effectiveness and
robustness against paraphrasing across five text domains and five of the latest commercial LLMs.
To evaluate BISCOPE, we compare it with nine existing detection methods, including Zero-shot
Query [48, 32], LogRank [11], LRR [41], DetectGPT [35], RADAR [16], Raidar [32], OpenAI
Detector [40], Binoculars [13], and GhostBuster [48], as well as with the most renowned commercial
detection API, GPTZero. We surpass these baseline methods in both effectiveness and efficiency.

3 Methodology of BISCOPE

3.1 Design Motivation

Although existing AI-generated text detection methods have been proven to be robust against texts
generated by various open-source LLMs, their performance degrades in more complex and real-world
scenarios, especially when dealing with the latest commercial LLMs and heterogeneous text genres.
The degradation can be attributed to the following two reasons: feature insufficiency and contextual
heterogeneity.

Feature Insufficiency. Existing methods focus on analyzing the difficulty a surrogate LLM experi-
ences in predicting the next token given the preceding input text. For example, these methods use the
rank or the probability of the next token as a metric or compare the discrepancy between the input text
and the surrogate model’s generation. Figure 1(a) presents the detection F1 score of a toy example
that uses the average next token rank from Llama-2-7B as the feature and a random forest model
as the classification model on both human text (in blue) and GPT-4-Turbo’s text (in orange). The
detection F1 score only reaches 0.55, which is just slightly better than random guesses. This indicates
the lack of a clear separation using only next token ranks. One may argue that the random forest may
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(a) Next Token Rank, F1=0.55 (b) Last Token Rank, F1=0.73 (c) Both Rank, F1=0.78

(d) Next Token CE, F1=0.63 (e) Last Token CE, F1=0.81 (f) Both CE, F1=0.85

Figure 1: Comparison of detection F1 scores when utilizing the rank
and cross-entropy loss regarding next token, preceding token or both.
The surrogate detection model is Llama-2-7B.
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not be powerful enough. However, we will show later that using additional features proposed in the
paper, the same random forest configuration could achieve much better results.

We observe that the internals of the surrogate LLM when used to predict the subject text have much
richer information that can be used. Figure 2 illustrates how LLM encodes information. The arrows
and texts in green illustrate the information related to the next token, while the arrows and texts
in gray show the information related to the preceding tokens. In the auto-regressive generation
mode, the LLM receives the tokens preceding to the current position as the input and outputs the
logits that contains its prediction for the next token. During this procedure, its internal states encode
the preceding tokens (i.e., memorization) [47] while implicitly “planning” for the next token [51],
namely, as observed by researchers in [51], the internal states show similarities to the encodings of
future tokens. The output logits, which can be considered as a reduced representation of the model’s
internal states, also contains both the information to predict the next token and the information of
preceding tokens. Existing methods focus only on the former by comparing the output logits with the
expected next token. In this paper, we propose to consider the preceding token information as well.
In particular, we hypothesize the following: for human-written text, the surrogate LLM has a
poor prediction for the next token and a strong memory of the previous token, reflected in the
output logits, whereas the behaviors for LLM-generated text are the opposite. Intuitively, it’s
like when we humans are unsure of what to say next, and the last word tends to stay in our minds.

To validate our hypothesis, we conducted an experiment in which we compared the current output
logits with the preceding token for a piece of a given text, leveraging the same random forest as
before. Figure 1(b) and (c) present the detection F1 score when only using the preceding token’s rank
and when using both the preceding and next tokens’ ranks (to distinguish human and LLM texts),
reaching 0.73 and 0.78 F1 scores, respectively, denoting a 0.2 F1 score improvement compared to
using the next token information alone. Observe that in (d) for next token prediction, the AI texts (in
orange) tend to have a smaller CE loss than human texts (in blue), indicating the LLM has a better
prediction for the AI texts. In (e) for previous token memorization, the human texts tend to have a
smaller loss than the AI texts, indicating the LLM has poorer memory for AI texts. Figures (a) and
(b) and an additional example in Appendix B show a similar trend. These support our hypothesis.

Thus, in BISCOPE, we design a novel bi-directional cross-entropy loss computation method that
computes the cross-entropy losses between the output logits and the expected next token, and between
the output logits and the preceding token. Figure 1(d)-(f) illustrate the F1 scores when using the
cross-entropy losses for next token, previous token, and both. Observe they achieve better results
compared to using plain ranks, due to the more wealthy information encoded. An additional example
using GPT-Neo-2.7B in Appendix B shows a similar trend.

Contextual Heterogeneity. In addition to insufficient feature utilization, we also observe that
contextual heterogeneity significantly influences detection accuracy. Existing methods directly use
surrogate LLMs to generate the given text in an auto-regressive manner, without incorporating any
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BCE

Figure 3: Overview of BISCOPE. Arrows and texts in brown indicate text summarization.

additional information of the context (for the text). As such, given a prefix part of the text, the LLM
may have a diverse set of possible completions, limiting the ability to separate human and LLM texts.

To alleviate this problem, we formalize our detection as a guided completion task, using a surrogate
LLM to first summarize the entire input text. These text summaries are then used to guide the
completion, providing complementary contextual information and making the features more robust.

3.2 Overview of BISCOPE

The entire workflow of BISCOPE can be summarized in four key steps, shown in Figure 3.

Step 1�: Completion Prompt Generation. In the first step, we initialize the detection as a guided
text completion task. We use a surrogate LLM to summarize the input text and generate a text
summary as a guidance. We then divide the input text into two segments. The first segment, along
with a completion request, is utilized to construct a text completion request. The text summary
guidance and the text completion request form a completion prompt. Details are presented in § 3.3.

Step 2�: Loss Computation In Text Completion. Given the completion prompt and the second
segment of the input text from Step 1�, we then calculate our novel bi-directional cross-entropy
losses for the tokens in the second text segment using multiple open-source LLMs in parallel. Details
are presented in § 3.4. The use of multiple LLMs is to reduce the uncertainty.

Step 3�: Statistical Feature Extraction. We vary the separation of the two segments at different
positions of the subject text (e.g., one-fourth, half, and three-fourth of the whole length). For each
setup, we collect the statistics of the bi-directional cross-entropy loss values. The statistics are
concatenated to form a feature vector. More details and justifications are presented in § 3.5.

Step 4�: Feature Classification. In the final step, we use the concatenated feature vector to train
a binary classifier, which determines whether the input text is human-generated or AI-generated.
Further details are presented in § 3.6.

3.3 Completion Prompt Generation

In BISCOPE, we calculate the bi-directional cross-entropy losses within a guided text completion
scenario. This scenario involves providing a text summary guidance and a short sub-string of the
input text to force LLMs to generate the remainder of the text. Specifically, to alleviate the impact of
contextual heterogeneity during text generation, we first utilize a surrogate LLM to summarize the
entire input text and obtain a summary as guidance. We then divide the input text into two segments
(e.g., the first 10% and the remaining 90%). The first segment, referred to as Input Text Segment 1,
serves as the sub-string in a text completion request, while the second segment, referred to as Input
Text Segment 2, is used as the completion ground-truth in § 3.4. By appending the text completion
request after the summary guidance, we construct a completion prompt shown as follows:

Given the summary:
{Text Summary Guidance}
Complete the following text:
{Input Text Segment 1}
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The text in black indicates the text completion request, while the text in brown indicates the guidance,
which is summarized using the following prompt:

Write a title for this text: {Input Text}

The summary contains the aggregated contextual information of the entire text, providing comple-
mentary guidance to the LLM completion, in addition to the first segment. To balance the detection
accuracy and efficiency, BISCOPE can also disable this text summary procedure to achieve faster
AI-generated text detection with satisfactory accuracy.

3.4 Loss Computation In Text Completion

After crafting the completion prompt, we then feed it into multiple open-source LLMs in parallel
to obtain multiple output logits that correspond to the Input Text Segment 2 from § 3.3 using the
teacher forcing pattern [25], which feeds the ground-truth token prefixes (Input Text Segment 2)
to compute the output logits at each token position. These output logits can be used to measure
how likely the LLMs predict the next token given its prefix in the subject text and how well the
LLMs memorize the preceding token, according to our discussion in § 3.1. We hence propose a
bi-directional cross-entropy calculation method in BISCOPE, which consists of both forward and
backward cross-entropy calculations. The forward cross-entropy (FCE) calculation is identical to the
commonly used cross-entropy in most LLM training processes, utilizing the output logits and the
next ground-truth token to capture the output logits’ next-token-related information. In contrast, the
backward cross-entropy (BCE) is calculated between the output logits and the immediate preceding
input token, capturing how much the logits memorizes the preceding token. The detailed FCE and
BCE calculations at token position i with LLM M are shown in Equation 1:

FCE i = �
||V||X

z=1

P̃z
i+1 · log(Pz

i ), BCE i = �
||V||X

z=1

P̃z
i · log(Pz

i ) (1)

where V indicates the vocabulary of the LLM, Pi denotes the soft-maxed output logits from M at
position i of the generated text (when given the preceding tokens from the completion prompt). P̃i

indicates the ground-truth token encoding at the same position.

3.5 Statistical Feature Extraction

The aforementioned bi-directional cross-entropy loss values may have different characteristics when
the text is partitioned at different positions. Intuitively, when the text is partitioned at a ratio of
1:9, meaning that we use the first 10% of the text to perform the completion, there tends to be a lot
more uncertainty compared to a partition of 9:1. A naive design is to fix a partition ratio. However,
finding the most effective partition is difficult. Another design is to use the loss values computed at
all positions. However, it can hardly deal with length variations of input texts. Therefore, our design
is to partition the whole text into n segments (n = 10 in our implementation). For each segment, we
collect the bidirectional loss value statistics over all the positions with the segment, including the
mean, maximum, minimum, and standard deviation values. This allows us to align texts of various
lengths and leverage the later classification to figure out the best partition positions (through learning).
Additionally, this multi-segment analysis requires only a one-time inference of the input text, as
the loss calculation at each position is independent of the others via teacher forcing. This allows
BISCOPE to obtain various and sufficient features with high efficiency.

3.6 Feature Classification

In the final step, we concatenate all the statistical features of both the FCE and BCE vectors from
all the detection LLMs into a one-dimensional feature vector, which is then used to train a binary
classifier to perform the classification. Due to the generality of these features, the binary classifier
can be directly used to detect unseen data, whether from unknown LLMs or unfamiliar text domains.
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4 Evaluation Results

4.1 Experimental Setup

We use five datasets in our evaluation, including two short natural language datasets (Arxiv [32]
and Yelp [32]), two long natural language datasets (Creative [48] and Essay [48]), and one code
dataset [8]. For all datasets, we reuse their human-generated data and craft AI-generated text using
five of the latest commercial LLMs. More details are presented in Appendix C. To the best of our
knowledge, we are the first to craft a comprehensive AI-generated text dataset using five of the latest
commercial LLMs from three leading AI corporations. For the metrics, we use two metrics in our
evaluation. To assess the effectiveness of the detection, we use a 5-fold cross-validation F1 score. To
evaluate the efficiency of the detection, we use the time cost per sample as the metric. We present
more hyper-parameter settings in Appendix A.

4.2 Detection Performance Comparison with Existing Baselines

We first evaluate BISCOPE (with and without the text summary guidance) and nine detection methods
on the normal dataset under both in-distribution and out-of-distribution (OOD) settings. Under
the in-distribution setting, the test data and training data are from the same source. While under
the OOD setting, the test data is from an unknown source. The results are presented in Table 1.
Our BISCOPE outperforms existing AI-generated text detection methods, achieving a 0.25 average
detection F1 score increase on the normal dataset under in-distribution setting. In the OOD setting,
our BISCOPE still surpasses existing detection methods with over a 0.16 average detection F1 score
increase. Detailed analysis is shown as follows.

In-Distribution Results. For the in-distribution setting, we report a 5-fold cross-validation F1 score
using one piece of human data and one piece of AI-generated data from the five latest commercial
LLMs, as shown in Table 1. BISCOPE ⇤ indicates our method with text summary guidance, while
BISCOPE represents our method without it. Our method outperforms all nine baselines across all five
datasets generated by the latest LLMs. Specifically, our method achieves a 0.29 average F1 score
increase on the two short natural language datasets, where existing methods’ best F1 score is around
0.90, while BISCOPE reaches over 0.95 in most cases. On the two long natural language datasets,
existing methods reach up to 0.97, while BISCOPE achieves over 0.99 in all cases, resulting in a 0.23
average improvement. On the code dataset, existing methods achieve a 0.60-0.70 average, whereas
BISCOPE reaches 0.84, achieving a 0.21 average increase. We further present the TPR-FPR (ROC)
curves of BISCOPE and 8 baselines in Figure 4 on the Yelp dataset. We observe that our BISCOPE
reaches over 0.8 detection TPR on average when the FPR is only 0.01, outperforming all the baselines
on all the five generative models’ data.

Out-of-Distribution Results. We use two out-of-distribution (OOD) evaluation settings on the
normal dataset, cross-model (CM) and cross-dataset (CD), based on previous studies [48, 32]. In CM
setting, we assess detection performance on AI-generated data from unknown LLMs within the same
text domain by training classifiers on human data and one piece of AI-generated data, then testing on
four others from the same dataset. In CD setting, we evaluate detection transferability across text
domains by training on data from one dataset and testing on data from four others, all generated by
the same LLM. Results across five LLMs are reported in Table 1. In the CM setting, the highest
baseline F1 score is 0.84 (average 0.77), while our BISCOPE achieves 0.93, showing a 0.16 average
increase. This indicates superior generality of BISCOPE in detecting unseen LLM-generated texts.
In the CD setting, BISCOPE’s average F1 score is 0.05 lower than RADAR that utilizes a model
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Table 1: Detection performance of BISCOPE and nine baselines on both normal and para-
phrased datasets with in-distribution and out-of-distribution (OOD) settings.

Normal Dataset Paraphrased Dataset Normal Normal Paraphrased

Method Turbo
GPT-3.5

Turbo
GPT-4

Sonnet
Claude-3

Opus
Claude-3

1.0-pro
Gemini

Turbo
GPT-3.5

Turbo
GPT-4

Sonnet
Claude-3

Opus
Claude-3

Avg.-CM
OOD

Avg.-CD
OOD

Avg.
OOD

A
rx

iv

Zero-shot Query 0.5768 0.5835 0.6764 0.6667 0.6666 0.5587 0.6116 0.6916 0.6935 - - -
Log Rank 0.6572 0.7006 0.8015 0.8809 0.8560 0.6628 0.6660 0.6634 0.6747 0.6913 0.6219 0.3655
LRR 0.6602 0.7031 0.8116 0.8596 0.8544 0.6654 0.6654 0.6654 0.6654 0.7319 0.6130 0.2353
DetectGPT 0.6654 0.6634 0.6673 0.6673 0.6673 0.6641 0.6628 0.6654 0.6654 0.6642 0.7091 0.6352
RADAR 0.9566 0.7858 0.7034 0.7754 0.7868 0.9203 0.6970 0.6884 0.7202 0.7404 0.8035 0.7388
Raidar 0.8316 0.8157 0.8029 0.8289 0.7366 0.9004 0.8851 0.8052 0.8303 0.6984 0.6524 0.7270
OpenAI Detector 0.7889 0.6660 0.6673 0.6673 0.6976 0.7062 0.6654 0.6673 0.6673 0.6249 0.6569 0.6705
Binoculars 0.9097 0.9135 0.9256 0.9699 0.9560 0.6617 0.6971 0.8112 0.8672 0.9163 0.8199 0.5835
GhostBuster 0.9716 0.9886 0.9815 0.9813 0.9571 0.9700 0.9943 0.9814 0.9856 0.9187 0.6811 0.9672

BISCOPE 0.9870 0.9928 0.9796 0.9885 0.9708 0.9769 0.9800 0.9625 0.9870 0.9517 0.7131 0.8534
BISCOPE⇤ 0.9928 0.9943 0.9869 0.9913 0.9797 0.9870 0.9859 0.9593 0.9884 0.9775 0.7767 0.8740

Ye
lp

Zero-shot Query 0.0020 0.0010 0.0110 0.0168 0.0080 0.0000 0.0009 0.0188 0.0188 - - -
Log Rank 0.6776 0.6721 0.7120 0.6946 0.6439 0.6754 0.6660 0.6745 0.6743 0.6574 0.6695 0.6258
LRR 0.6671 0.6678 0.6733 0.6678 0.6358 0.6681 0.6662 0.6674 0.6666 0.6589 0.6615 0.6508
DetectGPT 0.6945 0.6737 0.7252 0.7477 0.6626 0.6702 0.6669 0.7009 0.7166 0.6738 0.7187 0.6710
RADAR 0.7618 0.7090 0.7310 0.7590 0.7497 0.7485 0.7030 0.7117 0.7345 0.7148 0.7370 0.7033
Raidar 0.9023 0.8985 0.9180 0.8876 0.8915 0.8948 0.9124 0.9344 0.9128 0.8572 0.6850 0.7817
OpenAI Detector 0.7286 0.6668 0.6668 0.6616 0.6798 0.7240 0.6668 0.6668 0.6668 0.6348 0.6308 0.6563
Binoculars 0.7295 0.6665 0.7583 0.8260 0.6885 0.6683 0.6655 0.6908 0.7284 0.6930 0.8474 0.6681
GhostBuster 0.8193 0.8369 0.8746 0.8644 0.8625 0.8174 0.8649 0.9271 0.9145 0.7975 0.5859 0.8452

BISCOPE 0.9023 0.9405 0.9652 0.9532 0.9486 0.9064 0.9473 0.9814 0.9789 0.9063 0.8608 0.9523
BISCOPE⇤ 0.9010 0.9452 0.9658 0.9570 0.9545 0.9102 0.9530 0.9830 0.9757 0.9128 0.8455 0.9505

C
re

at
iv

e

Zero-shot Query 0.2730 0.1502 0.2691 0.3186 0.2719 0.2398 0.1694 0.1897 0.2948 - - -
Log Rank 0.9673 0.7341 0.8779 0.9269 0.8044 0.7673 0.6685 0.6823 0.7701 0.7993 0.5824 0.5213
LRR 0.9512 0.6732 0.8062 0.8884 0.7209 0.6638 0.6662 0.6649 0.6662 0.7242 0.5772 0.3846
DetectGPT 0.8305 0.7090 0.7922 0.8166 0.7580 0.6850 0.6715 0.7364 0.7066 0.7573 0.5415 0.6209
RADAR 0.9543 0.8869 0.9131 0.9345 0.9382 0.9298 0.8744 0.9160 0.9145 0.8934 0.7699 0.8937
Raidar 0.8933 0.8303 0.8481 0.8661 0.8588 0.8271 0.8217 0.8120 0.7978 0.8151 0.7580 0.5621
OpenAI Detector 0.6666 0.6671 0.6669 0.6671 0.6271 0.6671 0.6671 0.6671 0.6671 0.6103 0.6708 0.5475
Binoculars 0.9945 0.9681 0.9814 0.9866 0.9880 0.9627 0.8381 0.9348 0.9540 0.9711 0.7599 0.8738
GhostBuster 0.9965 0.9821 0.9834 0.9834 0.9920 0.9861 0.9786 0.9871 0.9865 0.9501 0.8206 0.9012

BISCOPE 0.9985 0.9950 0.9960 0.9930 0.9964 0.9955 0.9945 0.9955 0.9940 0.9846 0.7980 0.9707
BISCOPE⇤ 0.9975 0.9955 0.9955 0.9945 0.9970 0.9955 0.9955 0.9950 0.9945 0.9780 0.8154 0.9513

Es
sa

y

Zero-shot Query 0.0156 0.0098 0.0175 0.0059 0.0322 0.0078 0.0214 0.0423 0.0078 - - -
Log Rank 0.9936 0.9065 0.9771 0.9811 0.9774 0.9004 0.7067 0.8170 0.9313 0.9025 0.4518 0.6074
LRR 0.9945 0.8416 0.9673 0.9836 0.9685 0.8121 0.6658 0.7243 0.8546 0.8911 0.4724 0.5395
DetectGPT 0.9344 0.8709 0.9302 0.9378 0.9311 0.7910 0.7622 0.8609 0.8429 0.9140 0.5769 0.7513
RADAR 0.9812 0.8978 0.9648 0.9555 0.9650 0.9509 0.8211 0.9471 0.9118 0.9386 0.7665 0.8883
Raidar 0.9786 0.9424 0.9672 0.9710 0.9574 0.9448 0.9186 0.9146 0.9216 0.9416 0.7136 0.8000
OpenAI Detector 0.7069 0.6664 0.6667 0.6669 0.6426 0.6669 0.6662 0.6667 0.6664 0.5870 0.6411 0.5300
Binoculars 0.9995 0.9970 0.9945 0.9960 0.9978 0.9920 0.9607 0.9787 0.9955 0.9967 0.7383 0.9429
GhostBuster 0.9995 0.9950 0.9960 0.9965 0.9967 0.9916 0.9861 0.9880 0.9930 0.9804 0.7740 0.9435

BISCOPE 1.0000 0.9990 0.9985 0.9970 0.9994 0.9965 0.9990 0.9990 0.9980 0.9946 0.5456 0.9435
BISCOPE⇤ 1.0000 0.9990 0.9985 0.9975 0.9989 0.9975 0.9990 0.9985 0.9985 0.9914 0.5669 0.9292

C
od

e

Zero-shot Query 0.6300 0.5833 0.4351 0.3524 0.1854 0.6690 0.6784 0.6400 0.4545 - - -
Log Rank 0.6581 0.6610 0.6611 0.6569 0.6583 0.6612 0.6611 0.6556 0.6581 0.6521 0.5306 0.5539
LRR 0.6639 0.6639 0.6639 0.6639 0.6542 0.6639 0.6639 0.6639 0.6639 0.6613 0.6475 0.6591
DetectGPT 0.6361 0.6474 0.6583 0.6612 0.6682 0.6612 0.6639 0.6639 0.6612 0.6445 0.5936 0.6282
RADAR 0.6680 0.6653 0.6652 0.6597 0.6626 0.6598 0.6653 0.7322 0.6653 0.6652 0.8114 0.6660
Raidar 0.9368 0.8220 0.6121 0.6156 0.4858 0.9325 0.8744 0.8250 0.6197 0.8878 0.1378 0.6521
OpenAI Detector 0.7213 0.6977 0.6916 0.6542 0.6666 0.7514 0.6639 0.6639 0.6695 0.6567 0.4083 0.5767
Binoculars 0.7073 0.6512 0.6612 0.6653 0.6624 0.7101 0.6338 0.8041 0.7179 0.6273 0.7181 0.6771
GhostBuster 0.8524 0.7942 0.6556 0.6749 0.3860 0.8662 0.7729 0.7757 0.5390 0.6232 0.5091 0.6790

BISCOPE 0.9665 0.9655 0.8528 0.6069 0.7809 0.9659 0.9464 0.9691 0.9250 0.7974 0.5895 0.8999
BISCOPE⇤ 0.9692 0.9586 0.8526 0.6620 0.7741 0.9597 0.9435 0.9600 0.9222 0.7898 0.5855 0.9024

pre-trained on multiple datasets. However, compared to the other four baselines, BISCOPE still shows
a 0.12 average improvement. Detailed OOD results are in Appendix D.

4.3 Robustness against Intentional Paraphrasing

Existing studies [23, 39] show that intentional paraphrasing can effectively evade AI-generated
text detection. To verify the robustness of BISCOPE against paraphrasing, we utilize five of the
latest commercial LLMs to paraphrase their own data using the paraphrasing prompt from previous
work [16], and compare BISCOPE with nine baselines on this paraphrased dataset under both in-
distribution and out-of-distribution settings, as shown in Table 1. Under the in-distribution setting,
we test all the methods using the same configuration as on the normal dataset, exploring whether
paraphrasing reduces the discriminative power of existing methods. BISCOPE outperforms existing
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Figure 5: Comparison with GPTZero on five datasets using five latest commercial generative
AI models. The metric used in the figure is the detection F1 score.
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baselines with a 0.29 average F1 score increase. Additionally, existing baselines experience an overall
0.03 F1 detection score drop compared to their performance on the normal dataset. In contrast,
our BISCOPE performs even better on the paraphrased dataset, with an overall 0.02 average F1
score increase. Under the out-of-distribution setting, we train the classifiers for all the methods on
the normal dataset, while testing them on the paraphrased dataset, exploring the generality of the
detection against unseen paraphrased data. Our BISCOPE outperforms existing baselines with an
average 0.29 F1 detection score increase.

4.4 Comparison with The Latest Commercial Detection Method

We also compare BISCOPE with the latest version (2024-01-09) of the most renowned commercial
AI-generated text detection API, GPTZero [43], across all five datasets, as shown in Figure 5.
BISCOPE outperforms GPTZero in 72% of the cases. Specifically, BISCOPE achieves a 0.02, 0.01,
and 0.01 average F1 detection score increase on the Arxiv, Essay, and Creative datasets, respectively.
On the Yelp dataset, BISCOPE’s F1 detection score is 0.04 lower than GPTZero’s. However, on the
code dataset, BISCOPE performs significantly better than GPTZero, achieving a 0.19 average F1
score improvement, demonstrating BISCOPE’s superior generality from natural language to code.
Note that GPTZero’s detection model is pre-trained on millions of data points, while our BISCOPE’s
classifier is trained on at most 4, 000 test samples for each case.

4.5 Efficiency Analysis

To address real-world challenges, efficiency is crucial for detection methods. We compared BISCOPE
with nine baselines across five datasets, detailing average processing times for a single sample in
Figure 6. RADAR is the fastest at 0.01s per sample, while its adversarial training overhead may
be considerable. Processing times for the other baselines are as follows: zero-shot query at 0.32s,
LogRank at 0.05s, LRR at 0.10s, DetectGPT at 15.95s, Raidar at 27.42s, OpenAI Detector at 0.03s,
Binoculars at 0.19s, and GhostBuster at 0.37s. Zero-shot query, LogRank, LRR, and OpenAI Detector
are much quicker than DetectGPT, Raidar, Binoculars, and GhostBuster but offer lower detection
performance and robustness. Our BISCOPE processes a sample in 0.14s without summary guidance,
matching the real-time levels of zero-shot query, LogRank, and LRR, while improving detection
F1 score by over 0.30. With summary guidance, BISCOPE’s processing time increases to 1.35s per
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sample, still 12 to 20 times faster than DetectGPT and Raidar, and achieves the highest detection
score.

4.6 Ablation Study

We further evaluate the importance of each component in BISCOPE with two categories of ablation
experiments. Since BISCOPE utilizes six open-source LLMs in parallel and ensemble their features,
we first investigate the contribution of each LLM’s feature in Figure 7 individually. Then, we further
explore the contribution of BISCOPE’s FCE and BCE losses respectively, compared with their
aggregated performance, shown as Figure 8. More detailed results are shown in Appendix E. We also
present more detailed ablation study on the impact of different segmentation strategies in multi-point
splitting (Appendix E.3), and the impact of the completion prompt (Appendix E.4), in Appendix E.

BISCOPE’s Performance with Different Base Models. We individually test all the detection base
models in BISCOPE both with and without the summary procedure, including Gemma-2B, Gemma-
7B, Llama-2-7B, Mistral-7B, Llama-3-8B, and Llama-2-13B. All the detection models help BISCOPE
achieve over a 0.84 overall F1 detection score across all five datasets, demonstrating high consistency
across different detection base models. As the size of the detection base model increases, BISCOPE
performs progressively better, with F1 scores improving from 0.84 to 0.95.

Importance of FCE and BCE in BISCOPE’s Detection. To demonstrate the rationality of the
proposed bi-directional cross-entropy losses, we also evaluate BISCOPE by only using either FCE
or BCE losses, and using both of them with the Llama-2-7B model, as shown in Figure 8. When
using both the FCE and BCE losses, BISCOPE achieves the best average F1 detection score across
the five datasets, which is 0.94, highlighting the necessity of combining both FCE and BCE loss
features. When only using FCE or BCE , BISCOPE reaches 0.86 and 0.93 average F1 detection
scores, respectively, indicating that BCE is more discriminative than FCE .

5 Limitations and Future Work

Our BISCOPE can achieve over a 0.95 F1 detection score across five datasets generated by the five
latest commercial LLMs, both with and without intentional paraphrasing, illustrating the importance
of the preceding token information in the output logits. However, in the OOD cross-dataset setting,
there is a noticeable > 0.10 detection F1 score drop, highlighting the challenges in this setting. Thus,
there is still room for future research to achieve more effective and robust detection in few-shot and
cross-dataset settings, where the training set contains fewer samples and the test set comes from
different text domains. Additionally, exploring ways to further exploit preceding token information
and combine it with next token information should also be a future direction in the field of AI-
generated text detection.

6 Conclusion

Existing methods to differentiate AI-generated texts from human-generated texts often analyze the
difficulty for a surrogate LLM to generate the next token based on previous tokens from the text. We
propose a more discriminative approach via a novel bi-directional cross-entropy calculation method,
leveraging both the preceding token information and the next token information in the output logits.
We integrate this method into a four-step detection pipeline, BISCOPE, which consists of Completion
Prompt Generation, Loss Computation in Text Completion, Statistical Feature Extraction, and Feature
Classification. We evaluate BISCOPE on five datasets, including both natural language and code,
against six existing detection methods. BISCOPE surpasses all these methods, improving the average
F1 detection score by 0.30 and also outperforming the well-known commercial API – GPTZero in
72% cases, while maintaining a real-time processing speed of less than 200ms per sample.
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To further illustrate our BISCOPE with more details, we present the following materials in the
Appendix, shown as follows:

• Appendix A: Hyper-parameter settings for our method and all the baselines.
• Appendix B: An additional motivation example using a smaller LLM.
• Appendix C: More statistical details of the dataset crafted and utilized in the paper.
• Appendix D: More detailed results on both normal and paraphrased data under OOD setting.
• Appendix E: More details of the ablation study.

A Hyper-parameter Settings

We use the default best-performance settings for all the baselines. Specifically, we use GPT-Neo-
2.7B [6] as the surrogate model in LogRank and LRR, and as the scoring model in DetectGPT, where
we use T5-3B [38] as the mask-filling model. For RADAR, we use its officially released detection
model, which is a pre-trained RoBERTa-Large [29] model. For Zero-shot Query and Raidar, we use
GPT-3.5-Turbo as the query model and the rewriting model. For other baselines, we strictly follow
their official implementations with their best configurations. For our BISCOPE, we utilize six open-
source LLMs in parallel, including Gemma-2B, Gemma-7B, Llama-2-7B, Mistral-7B, Llama-3-8B,
and Llama-2-13B. We also test BISCOPE with (BISCOPE ⇤) and without (BISCOPE) text summary
guidance. For better reproducibility, we recommend using either Llama2-7B or Llama2-13B as the
surrogate model, while the ensemble of more surrogate models is always welcomed. For the text split
method, we recommend splitting the text at every 10% length, as used in our paper.

B Additional Motivation Example
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(a) Next Token Rank, F1=0.58 (b) Last Token Rank, F1=0.63 (c) Both Rank, F1=0.67

(d) Next Token CE, F1=0.53 (e) Last Token CE, F1=0.76 (f) Both CE, F1=0.82

Figure 9: Comparison between the detection F1 scores when utilizing the rank and cross-entropy
loss regarding next token, last token or both. The detection sarrogate model is GPT-Neo 2.7B.

Figure 9 presents an additional example using a smaller language model: GPT-Neo-2.7B. Specifically,
Figure 9(a) and (d) show the detection F1 score when only using the next token’s rank and cross-
entropy loss for detection. The F1 detection scores are less than 0.60 in both cases. However, when
we use the preceding token’s rank or cross-entropy loss as the feature, shown in Figure 9(b) and
(e), the detection F1 scores increase to 0.63 and 0.76 respectively, indicating the higher reference
value of the preceding token information. Figure 9(c) and (f) also show that using both the preceding
token information and the next token information in the output logits achieves the best detection
performance, with overall detection F1 scores of 0.67 and 0.82.

Moreover, when considering the preceding token information, AI text has a smaller rank score
or higher cross-entropy loss, representing worse memorization of the AI text in the output logits.
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Conversely, when considering the next token information, the result is the opposite, showing better
prediction for AI text. This trend aligns with the results in Figure 1, demonstrating the generality of
our observation.

C Additional Details about Datasets

Table 2: Statistical details of the five datasets used in our paper.
Normal Dataset Paraphrased Dataset

Data Type Dataset Size Average Len. Min Len. Max Len. Median Len. Dataset Size Average Len. Min Len. Max Len. Median Len.

Arxiv

Human 350 786.7 132 1736 715.0 - - - - -
Machine 1750 787.1 101 1701 810.5 1400 875.8 174 1874 931.5
All 2100 787.0 101 1736 799.5 1400 875.8 174 1874 931.5

Code

Human 164 631.5 132 1993 572.0 - - - - -
Machine 819 413.3 41 1908 352.0 656 493.6 13 2333 382.5
All 983 449.7 41 1993 387.0 656 493.6 13 2333 382.5

Yelp

Human 2000 554.9 37 4959 407.0 - - - - -
Machine 9740 461.1 10 2548 414.0 8000 586.5 54 2593 537.0
All 11740 477.1 10 4959 413.0 8000 586.5 54 2593 537.0

Essay

Human 1000 4249.9 1276 41470 3301.5 - - - - -
Machine 4897 3827.7 515 21094 3486.0 3999 3666.8 129 19878 3284.0
All 5897 3899.3 515 41470 3449.0 3999 3666.8 129 19878 3284.0

Creative

Human 1000 2899.0 499 9933 2462.5 - - - - -
Machine 4840 2851.9 176 13716 2620.0 4000 2924.4 85 16812 2674.5
All 5840 2860.0 176 13716 2588.5 4000 2924.4 85 16812 2674.5

For all datasets, we reuse their human-generated data and craft AI-generated text using five of the
latest commercial LLMs: GPT-3.5-Turbo [36], GPT-4-Turbo [1], Claude-3-Sonnet [2], Claude-3-
Opus [2], and Gemini-1.0-Pro [42]. Thus, for each dataset, we have one piece of human-generated
data and five pieces of AI-generated data. Additionally, we also create a corresponding paraphrased
dataset using similar paraphrasing prompts from previous studies [32] on our newly crafted dataset to
evaluate the robustness of the detection methods.

Table 2 presents more detailed information about the datasets used in our paper, for both the normal
dataset and the paraphrased dataset. For the short natural language datasets (i.e., Arxiv and Yelp), the
average text lengths are 187 and 477, respectively, with minimal lengths of 101 and 10. In contrast,
the average text lengths of the long natural language datasets (i.e., Creative and Essay) are 2860 and
3899, which are 6-15 times larger than the short natural language dataset’s sample length. The code
dataset contains approximately 164 pieces of Python code for human-generated text and AI-generated
text from each LLM, with an average length of 983, a minimum length of 41, and a maximum length
of 1993. For all the datasets, the human-generated data and AI-generated data share similar lengths,
preventing simple length-based detection.

D Additional Comparison Results under OOD Setting

Table 3 illustrates more detailed OOD results on both the normal and paraphrased datasets across
five datasets. Under the cross-model setting on the normal dataset, BISCOPE outperforms existing
baselines in 21 out of 25 cases. Specifically, BISCOPE reaches over a 0.95 detection F1 score against
five generative LLMs on the Arxiv, Creative, and Essay datasets, while the detection F1 scores of
existing baselines are usually less than 0.90. On the Yelp dataset, BISCOPE achieves over a 0.90
detection F1 score against all five generative models, while the five baselines reach less than a 0.85
detection F1 score in most cases. On the code dataset, our BISCOPE outperforms all baselines except
for Raidar, achieving more than a 0.15 detection F1 score increase. Under the cross-dataset setting on
the normal dataset, our BISCOPE performs worse than under the cross-model setting, outperforming
existing methods in only 9 out of 25 cases. However, in most cases, BISCOPE is the second-best
detection method, only trailing RADAR, which uses a detection model pre-trained on texts from
multiple domains. As for the OOD setting on the paraphrased dataset, BISCOPE outperforms the
five baselines in 17 out of 20 cases, achieving over a 0.90 detection F1 score compared to the < 0.75
average F1 score of the baselines.
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Table 3: Detailed performance comparison on both normal and paraphrased dataset under
OOD setting.

Normal-Cross Model Normal-Cross Dataset Paraphrased-OOD

Method Turbo
GPT-3.5

Turbo
GPT-4

Sonnet
Claude-3

Opus
Claude-3

1.0-pro
Gemini

Turbo
GPT-3.5

Turbo
GPT-4

Sonnet
Claude-3

Opus
Claude-3

1.0-pro
Gemini

Turbo
GPT-3.5

Turbo
GPT-4

Sonnet
Claude-3

Opus
Claude-3

A
rx

iv

Log Rank 0.6723 0.7033 0.7406 0.6805 0.6597 0.6727 0.5779 0.6476 0.6522 0.5590 0.5814 0.2821 0.2604 0.3382
LRR 0.7920 0.7187 0.7589 0.7156 0.6742 0.6866 0.5238 0.6302 0.6650 0.5592 0.0881 0.2089 0.2904 0.3537
DetectGPT 0.6667 0.6637 0.6631 0.6637 0.6637 0.6845 0.6926 0.7343 0.7421 0.6921 0.6402 0.5774 0.6622 0.6609
RADAR 0.5721 0.7949 0.7799 0.7854 0.7696 0.8315 0.7638 0.8037 0.8116 0.8071 0.9223 0.6546 0.7128 0.6654
Raidar 0.5702 0.6975 0.7604 0.6946 0.7693 0.5010 0.6736 0.6841 0.6888 0.7144 0.8303 0.7195 0.6286 0.7297
OpenAI Detector 0.5209 0.6667 0.6670 0.6657 0.6043 0.6917 0.6653 0.6841 0.6679 0.5758 0.6916 0.6654 0.6608 0.6641
Binoculars 0.9396 0.9272 0.9339 0.8988 0.8818 0.8430 0.7495 0.8489 0.8814 0.7766 0.4284 0.4547 0.7406 0.7105
GhostBuster 0.7684 0.9370 0.9617 0.9561 0.9702 0.5861 0.6942 0.7281 0.6991 0.6982 0.9543 0.9769 0.9562 0.9814

BISCOPE 0.9683 0.9496 0.9665 0.9126 0.9617 0.5706 0.6642 0.7548 0.7968 0.7791 0.8610 0.7461 0.8766 0.9298
BISCOPE⇤ 0.9859 0.9807 0.9881 0.9518 0.9810 0.8250 0.6494 0.8285 0.7875 0.7930 0.9044 0.7678 0.8941 0.9296

Ye
lp

Log Rank 0.6722 0.6722 0.6309 0.6345 0.6774 0.6695 0.6678 0.6836 0.6841 0.6427 0.6752 0.6417 0.5546 0.6318
LRR 0.6600 0.6601 0.6475 0.6585 0.6686 0.6667 0.6664 0.6664 0.6664 0.6416 0.6662 0.6644 0.6163 0.6564
DetectGPT 0.6906 0.6817 0.6738 0.6254 0.6976 0.7124 0.6931 0.7363 0.7534 0.6985 0.6379 0.6345 0.7029 0.7085
RADAR 0.7129 0.7180 0.7303 0.7164 0.6964 0.8760 0.8325 0.8129 0.7383 0.4254 0.7506 0.6982 0.6620 0.7023
Raidar 0.8337 0.8493 0.8594 0.8749 0.8688 0.4310 0.7533 0.7835 0.7879 0.6695 0.7897 0.8886 0.6993 0.7493
OpenAI Detector 0.5876 0.6587 0.6587 0.6425 0.6267 0.6853 0.6669 0.6663 0.6055 0.5299 0.7243 0.6668 0.6668 0.5674
Binoculars 0.7076 0.6669 0.7028 0.6690 0.7188 0.8809 0.6668 0.8978 0.9350 0.8566 0.6195 0.6632 0.6750 0.7148
GhostBuster 0.7727 0.8176 0.8074 0.8076 0.7821 0.3737 0.7522 0.6575 0.7167 0.4294 0.7970 0.8539 0.8546 0.8754

BISCOPE 0.9010 0.9257 0.8890 0.8982 0.9174 0.9189 0.8189 0.8639 0.8441 0.8580 0.9046 0.9522 0.9787 0.9736
BISCOPE⇤ 0.9134 0.9266 0.8956 0.9049 0.9234 0.8912 0.8056 0.8670 0.8460 0.8175 0.9017 0.9517 0.9787 0.9700

C
re

at
iv

e

Log Rank 0.7438 0.7836 0.8239 0.7965 0.8485 0.5514 0.5614 0.5938 0.6269 0.5785 0.5132 0.3257 0.5324 0.7138
LRR 0.6695 0.6864 0.7587 0.7277 0.7786 0.5647 0.5837 0.5835 0.5940 0.5601 0.3500 0.3255 0.3605 0.5024
DetectGPT 0.7484 0.7466 0.7592 0.7545 0.7780 0.4603 0.5679 0.5063 0.5933 0.5797 0.5669 0.5709 0.6951 0.6506
RADAR 0.8639 0.9067 0.9112 0.8919 0.8932 0.8052 0.7352 0.7511 0.7853 0.7727 0.9131 0.8659 0.9129 0.8830
Raidar 0.7705 0.8417 0.8328 0.8201 0.8106 0.7048 0.7343 0.7933 0.7779 0.7796 0.6467 0.5797 0.5678 0.4543
OpenAI Detector 0.4144 0.6569 0.6567 0.6567 0.6669 0.7120 0.6667 0.6666 0.6667 0.6420 0.1892 0.6669 0.6669 0.6669
Binoculars 0.9600 0.9783 0.9803 0.9776 0.9595 0.7386 0.6786 0.7894 0.8680 0.7248 0.8999 0.7326 0.9089 0.9537
GhostBuster 0.8597 0.9825 0.9817 0.9615 0.9650 0.8202 0.8058 0.8296 0.8318 0.8156 0.7059 0.9635 0.9778 0.9576

BISCOPE 0.9514 0.9949 0.9960 0.9917 0.9890 0.6212 0.8081 0.8522 0.8596 0.8490 0.8981 0.9950 0.9950 0.9945
BISCOPE⇤ 0.9169 0.9955 0.9950 0.9912 0.9914 0.6507 0.8317 0.8759 0.8732 0.8457 0.8192 0.9965 0.9960 0.9935

Es
sa

y

Log Rank 0.8185 0.9433 0.9234 0.8989 0.9286 0.4447 0.3644 0.4817 0.5211 0.4472 0.4331 0.4073 0.7244 0.8648
LRR 0.8415 0.8892 0.9128 0.9010 0.9110 0.5060 0.3917 0.4859 0.5429 0.4354 0.4418 0.2645 0.6478 0.8040
DetectGPT 0.9087 0.9238 0.9163 0.9096 0.9118 0.5452 0.5392 0.6067 0.6467 0.5469 0.6744 0.6604 0.8352 0.8352
RADAR 0.9121 0.9450 0.9398 0.9488 0.9473 0.8088 0.7222 0.7492 0.7828 0.7693 0.9113 0.8028 0.9413 0.8978
Raidar 0.9239 0.9536 0.9448 0.9307 0.9552 0.7382 0.7202 0.7058 0.6833 0.7203 0.8889 0.7903 0.7399 0.7809
OpenAI Detector 0.2880 0.6604 0.6606 0.6600 0.6662 0.5673 0.6670 0.6663 0.6669 0.6381 0.1228 0.6647 0.6669 0.6656
Binoculars 0.9954 0.9971 0.9973 0.9968 0.9968 0.7499 0.5924 0.7826 0.8415 0.7253 0.9826 0.8205 0.9733 0.9950
GhostBuster 0.9500 0.9955 0.9931 0.9853 0.9779 0.7691 0.6945 0.7588 0.8306 0.8167 0.9030 0.9639 0.9362 0.9708

BISCOPE 0.9825 0.9981 0.9986 0.9988 0.9949 0.4709 0.5208 0.5579 0.6533 0.5252 0.8179 0.9863 0.9717 0.9979
BISCOPE⇤ 0.9653 0.9987 0.9986 0.9991 0.9952 0.4702 0.5305 0.6152 0.6866 0.5319 0.7531 0.9811 0.9847 0.9980

C
od

e

Log Rank 0.6629 0.6615 0.6629 0.6315 0.6416 0.6851 0.4556 0.6693 0.4969 0.3459 0.5949 0.5148 0.4518 0.6541
LRR 0.6614 0.6642 0.6656 0.6642 0.6513 0.6654 0.6669 0.6672 0.6668 0.5714 0.6529 0.6667 0.6499 0.6667
DetectGPT 0.6588 0.6560 0.6533 0.6434 0.6111 0.7056 0.6632 0.7392 0.7592 0.1008 0.6095 0.5975 0.6390 0.6667
RADAR 0.6599 0.6670 0.6663 0.6656 0.6673 0.8476 0.7668 0.8062 0.8232 0.8134 0.6667 0.6653 0.6666 0.6653
Raidar 0.9359 0.9498 0.9364 0.9277 0.6893 0.0844 0.0806 0.0494 0.1509 0.3236 0.8685 0.6542 0.4409 0.6448
OpenAI Detector 0.6116 0.6609 0.6689 0.6741 0.6680 0.5297 0.0992 0.2784 0.5289 0.6054 0.7293 0.6122 0.3406 0.6247
Binoculars 0.5510 0.6070 0.6656 0.6567 0.6563 0.8481 0.7608 0.6680 0.6724 0.6412 0.7107 0.6656 0.6667 0.6653
GhostBuster 0.5725 0.6249 0.6750 0.6809 0.5626 0.5253 0.4645 0.5441 0.5404 0.4714 0.8596 0.7773 0.5906 0.4884

BISCOPE 0.7752 0.7661 0.8376 0.8012 0.8068 0.6184 0.5843 0.5612 0.5889 0.5947 0.9683 0.9523 0.8987 0.7801
BISCOPE⇤ 0.7721 0.7621 0.8374 0.7906 0.7869 0.6033 0.5769 0.5750 0.5793 0.5930 0.9719 0.9528 0.8829 0.8021

E Additional Details of Ablation Study

E.1 Results with Different Open-source LLMs

Table 4 shows additional details when different detection models are used by BISCOPE on both the
normal and paraphrased datasets. In most cases, the ensemble results are better than the F1 scores
derived using a single detection model. However, at least 90% of the detection performance can be
preserved in most single-detection-model settings. Additionally, the detection F1 score consistently
increases with the increasing model size of the detection model.

Among all the detection models, the Llama-2 series performs the best, outperforming its updated
version, Llama-3. In contrast, the Gemma series performs the worst. A possible reason is that the
Gemma and Llama-3 series models are still in their early development stages and are not fully capable
of handling the AI-generated text detection task.
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Table 4: Detailed performance comparison with different detection base models in BISCOPE.
Normal Paraphrased

Model Turbo
GPT-3.5

Turbo
GPT-4

Sonnet
Claude-3

Opus
Claude-3

1.0-pro
Gemini Average Turbo

GPT-3.5
Turbo
GPT-4

Sonnet
Claude-3

Opus
Claude-3 Average

A
rx

iv

w
/o

su
m

m
ar

y

Gemma-2B 0.8997 0.8763 0.8587 0.9290 0.9175 0.8962 0.8606 0.8489 0.8338 0.8953 0.8597
Gemma-7B 0.9530 0.9335 0.8970 0.9679 0.9336 0.9370 0.9037 0.8678 0.8660 0.9210 0.8896
Llama-2-7b 0.9827 0.9957 0.9766 0.9855 0.9708 0.9823 0.9360 0.9535 0.9506 0.9796 0.9549
Mixtral-7B 0.9710 0.9843 0.9638 0.9855 0.9663 0.9742 0.9511 0.9561 0.9414 0.9724 0.9553
Llama-3-8B 0.9685 0.9786 0.9576 0.9841 0.9665 0.9711 0.9102 0.9002 0.8932 0.9405 0.9110
Llama-2-13B 0.9634 0.9871 0.9662 0.9914 0.9678 0.9752 0.9307 0.9400 0.9502 0.9826 0.9509
ensemble 0.9870 0.9928 0.9796 0.9885 0.9708 0.9837 0.9769 0.9800 0.9625 0.9870 0.9766

w
/s

um
m

ar
y

Gemma-2B 0.9223 0.9255 0.9140 0.9568 0.9282 0.9294 0.8282 0.8384 0.8386 0.9078 0.8533
Gemma-7B 0.9501 0.9438 0.9208 0.9679 0.9357 0.9437 0.8982 0.8838 0.8777 0.9283 0.8970
Llama-2-7b 0.9957 0.9971 0.9913 0.9898 0.9798 0.9907 0.9681 0.9785 0.9710 0.9884 0.9765
Mixtral-7B 0.9739 0.9798 0.9679 0.9884 0.9711 0.9762 0.9304 0.9524 0.9361 0.9726 0.9479
Llama-3-8B 0.9814 0.9785 0.9708 0.9841 0.9725 0.9775 0.9152 0.9175 0.8787 0.9461 0.9144
Llama-2-13B 0.9842 0.9856 0.9766 0.9884 0.9723 0.9814 0.9468 0.9526 0.9485 0.9826 0.9576
ensemble 0.9928 0.9943 0.9869 0.9913 0.9797 0.9890 0.9870 0.9859 0.9593 0.9884 0.9802

Ye
lp

w
/o

su
m

m
ar

y

Gemma-2B 0.7400 0.7393 0.7689 0.7508 0.7557 0.7509 0.7368 0.7578 0.8053 0.7853 0.7713
Gemma-7B 0.8309 0.8730 0.8958 0.8795 0.8817 0.8722 0.8208 0.8764 0.8944 0.8890 0.8702
Llama-2-7b 0.8566 0.9002 0.9446 0.9289 0.9209 0.9102 0.8589 0.9233 0.9717 0.9633 0.9293
Mixtral-7B 0.8473 0.8939 0.9365 0.9128 0.8949 0.8971 0.8630 0.9101 0.9632 0.9554 0.9229
Llama-3-8B 0.8550 0.8863 0.9301 0.9249 0.9026 0.8998 0.8374 0.8900 0.9271 0.9275 0.8955
Llama-2-13B 0.8753 0.9220 0.9586 0.9479 0.9360 0.9280 0.8875 0.9316 0.9770 0.9724 0.9421
ensemble 0.9023 0.9405 0.9652 0.9532 0.9486 0.9420 0.9064 0.9473 0.9814 0.9789 0.9535

w
/s

um
m

ar
y

Gemma-2B 0.7475 0.7544 0.7912 0.8158 0.7660 0.7750 0.7486 0.7544 0.8396 0.8163 0.7897
Gemma-7B 0.8218 0.8706 0.8800 0.8800 0.8806 0.8666 0.8145 0.8688 0.8854 0.8870 0.8639
Llama-2-7b 0.8655 0.9121 0.9490 0.9341 0.9251 0.9172 0.8689 0.9270 0.9750 0.9656 0.9341
Mixtral-7B 0.8724 0.9006 0.9413 0.9281 0.9050 0.9095 0.8782 0.9092 0.9624 0.9532 0.9258
Llama-3-8B 0.8727 0.8998 0.9393 0.9305 0.9088 0.9102 0.8511 0.8894 0.9416 0.9314 0.9034
Llama-2-13B 0.8771 0.9250 0.9533 0.9380 0.9280 0.9243 0.8878 0.9376 0.9800 0.9709 0.9441
ensemble 0.9010 0.9452 0.9658 0.9570 0.9545 0.9447 0.9102 0.9530 0.9830 0.9757 0.9555

C
re

at
iv

e w
/o

su
m

m
ar

y

Gemma-2B 0.9819 0.9527 0.9424 0.9620 0.9695 0.9617 0.9664 0.9410 0.9284 0.9586 0.9486
Gemma-7B 0.9880 0.9555 0.9549 0.9739 0.9751 0.9695 0.9786 0.9611 0.9500 0.9699 0.9649
Llama-2-7b 0.9985 0.9930 0.9940 0.9915 0.9934 0.9941 0.9925 0.9925 0.9935 0.9940 0.9931
Mixtral-7B 0.9970 0.9920 0.9950 0.9920 0.9964 0.9945 0.9915 0.9920 0.9900 0.9900 0.9909
Llama-3-8B 0.9985 0.9754 0.9790 0.9910 0.9911 0.9870 0.9720 0.9510 0.9531 0.9740 0.9625
Llama-2-13B 0.9980 0.9940 0.9930 0.9915 0.9958 0.9945 0.9935 0.9950 0.9945 0.9945 0.9944
ensemble 0.9985 0.9950 0.9960 0.9930 0.9964 0.9958 0.9955 0.9945 0.9955 0.9940 0.9949

w
/s

um
m

ar
y

Gemma-2B 0.9875 0.9519 0.9503 0.9672 0.9694 0.9653 0.9675 0.9459 0.9426 0.9654 0.9554
Gemma-7B 0.9885 0.9545 0.9541 0.9759 0.9786 0.9703 0.9740 0.9680 0.9540 0.9775 0.9684
Llama-2-7b 0.9980 0.9925 0.9950 0.9940 0.9935 0.9946 0.9885 0.9925 0.9940 0.9925 0.9919
Mixtral-7B 0.9960 0.9930 0.9950 0.9925 0.9922 0.9937 0.9895 0.9899 0.9935 0.9920 0.9912
Llama-3-8B 0.9980 0.9790 0.9835 0.9935 0.9917 0.9891 0.9760 0.9604 0.9723 0.9795 0.9721
Llama-2-13B 0.9975 0.9950 0.9950 0.9930 0.9958 0.9953 0.9930 0.9940 0.9945 0.9940 0.9939
ensemble 0.9975 0.9955 0.9955 0.9945 0.9970 0.9960 0.9955 0.9955 0.9950 0.9945 0.9951

Es
sa

y

w
/o

su
m

m
ar

y

Gemma-2B 0.9980 0.9830 0.9935 0.9919 0.9950 0.9923 0.9805 0.9543 0.9666 0.9864 0.9720
Gemma-7B 0.9965 0.9699 0.9855 0.9900 0.9905 0.9865 0.9779 0.9583 0.9721 0.9784 0.9717
Llama-2-7b 0.9995 0.9970 0.9965 0.9965 0.9995 0.9978 0.9940 0.9975 0.9970 0.9970 0.9964
Mixtral-7B 1.0000 0.9970 0.9940 0.9955 0.9989 0.9971 0.9920 0.9950 0.9839 0.9955 0.9916
Llama-3-8B 0.9995 0.9975 0.9965 0.9965 0.9994 0.9979 0.9905 0.9910 0.9849 0.9955 0.9905
Llama-2-13B 0.9995 0.9980 0.9980 0.9960 0.9994 0.9982 0.9955 0.9975 0.9955 0.9970 0.9964
ensemble 1.0000 0.9990 0.9985 0.9970 0.9994 0.9988 0.9965 0.9990 0.9990 0.9980 0.9981

w
/s

um
m

ar
y

Gemma-2B 0.9970 0.9850 0.9935 0.9945 0.9967 0.9933 0.9810 0.9645 0.9779 0.9875 0.9777
Gemma-7B 0.9980 0.9743 0.9879 0.9900 0.9899 0.9880 0.9820 0.9673 0.9699 0.9834 0.9757
Llama-2-7b 0.9995 0.9975 0.9975 0.9975 0.9994 0.9983 0.9950 0.9970 0.9965 0.9980 0.9966
Mixtral-7B 1.0000 0.9960 0.9955 0.9960 0.9972 0.9969 0.9940 0.9945 0.9834 0.9945 0.9916
Llama-3-8B 0.9990 0.9975 0.9980 0.9975 0.9989 0.9982 0.9935 0.9925 0.9925 0.9980 0.9941
Llama-2-13B 0.9985 0.9980 0.9965 0.9955 0.9983 0.9974 0.9955 0.9985 0.9955 0.9970 0.9966
ensemble 1.0000 0.9990 0.9985 0.9975 0.9989 0.9988 0.9975 0.9990 0.9985 0.9985 0.9984

C
od

e

w
/o

su
m

m
ar

y

Gemma-2B 0.7776 0.7238 0.6018 0.5056 0.2674 0.5752 0.9805 0.9543 0.9666 0.9864 0.9720
Gemma-7B 0.7759 0.7296 0.5441 0.4515 0.2983 0.5599 0.9779 0.9583 0.9721 0.9784 0.9717
Llama-2-7b 0.9479 0.9301 0.8275 0.5677 0.7878 0.8122 0.9940 0.9975 0.9970 0.9970 0.9964
Mixtral-7B 0.9501 0.9527 0.8396 0.5834 0.6986 0.8049 0.9920 0.9950 0.9839 0.9955 0.9916
Llama-3-8B 0.8388 0.7787 0.6202 0.5560 0.4457 0.6479 0.9905 0.9910 0.9849 0.9955 0.9905
Llama-2-13B 0.9630 0.9590 0.8215 0.6151 0.7980 0.8313 0.9955 0.9975 0.9955 0.9970 0.9964
ensemble 0.9665 0.9655 0.8528 0.6069 0.7809 0.8345 0.9965 0.9990 0.9990 0.9980 0.9981

w
/s

um
m

ar
y

Gemma-2B 0.7975 0.7051 0.5590 0.4716 0.2640 0.5594 0.9810 0.9645 0.9779 0.9875 0.9777
Gemma-7B 0.8008 0.7295 0.5601 0.4562 0.3130 0.5719 0.9820 0.9673 0.9699 0.9834 0.9757
Llama-2-7b 0.9504 0.9346 0.8274 0.6304 0.7768 0.8239 0.9950 0.9970 0.9965 0.9980 0.9966
Mixtral-7B 0.9474 0.9280 0.8158 0.6556 0.7146 0.8123 0.9940 0.9945 0.9834 0.9945 0.9916
Llama-3-8B 0.8592 0.7871 0.6223 0.5536 0.4954 0.6635 0.9935 0.9925 0.9925 0.9980 0.9941
Llama-2-13B 0.9426 0.9469 0.8468 0.6070 0.8084 0.8303 0.9955 0.9985 0.9955 0.9970 0.9966
ensemble 0.9692 0.9586 0.8526 0.6620 0.7741 0.8433 0.9975 0.9990 0.9985 0.9985 0.9984
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Table 5: Detailed contribution comparison between FCE and BCE .
Llama-2-7b w/o summary Generative AI Model

Dataset Method GPT-3.5-Turbo GPT-4-Turbo Claude-3-Sonnet Claude-3-Opus Gemini-1.0-pro

Arxiv

FCE Only 0.9281 0.9698 0.9407 0.9827 0.9647
BCE Only 0.9524 0.9685 0.9668 0.9740 0.9429
BCE+FCE 0.9827 0.9957 0.9766 0.9855 0.9708

Yelp

FCE Only 0.7934 0.7865 0.8834 0.8626 0.8342
BCE Only 0.8435 0.9005 0.9396 0.9198 0.9151
BCE+FCE 0.8566 0.9002 0.9446 0.9289 0.9209

Creative

FCE Only 0.9965 0.9498 0.9799 0.9855 0.9791
BCE Only 0.9955 0.9945 0.9950 0.9935 0.9940
BCE+FCE 0.9985 0.9930 0.9940 0.9915 0.9934

Essay

FCE Only 0.9980 0.9860 0.9929 0.9930 0.9989
BCE Only 0.9995 0.9970 0.9975 0.9965 0.9994
BCE+FCE 0.9995 0.9970 0.9965 0.9965 0.9995

Code

FCE Only 0.7849 0.6439 0.4938 0.4628 0.3817
BCE Only 0.9496 0.9466 0.8173 0.5747 0.7819
BCE+FCE 0.9479 0.9301 0.8275 0.5677 0.7878

Table 6: Ablation results of different segmentation methods in multi-point splitting in BISCOPE.
Normal Dataset Paraphrased Dataset Normal Paraphrased

Method Turbo
GPT-3.5

Turbo
GPT-4

Sonnet
Claude-3

Opus
Claude-3

1.0-pro
Gemini

Turbo
GPT-3.5

Turbo
GPT-4

Sonnet
Claude-3

Opus
Claude-3 Avg. Avg.

A
rx

iv Every 50% Text 0.9754 0.9871 0.9635 0.9855 0.9637 0.9587 0.9756 0.9486 0.9767 0.9750 0.9649
Every 25% Text 0.9813 0.9914 0.9662 0.9884 0.9690 0.9675 0.9769 0.9622 0.9797 0.9792 0.9716

Every 10% Text (In Paper) 0.9870 0.9928 0.9796 0.9885 0.9708 0.9769 0.9800 0.9625 0.9870 0.9837 0.9766

Ye
lp Every 50% Text 0.8922 0.9314 0.9584 0.9471 0.9337 0.8921 0.9359 0.9779 0.9704 0.9326 0.9441

Every 25% Text 0.9002 0.9381 0.9651 0.9527 0.9466 0.9041 0.9452 0.9817 0.9757 0.9405 0.9517

Every 10% Text (In Paper) 0.9023 0.9405 0.9652 0.9532 0.9486 0.9064 0.9473 0.9814 0.9789 0.9420 0.9535

C
re

at
iv

e Every 50% Text 0.9985 0.9960 0.9940 0.9955 0.9958 0.9950 0.9955 0.9935 0.9930 0.9960 0.9943
Every 25% Text 0.9980 0.9955 0.9960 0.9930 0.9970 0.9960 0.9955 0.9950 0.9935 0.9959 0.9950

Every 10% Text (In Paper) 0.9985 0.9950 0.9960 0.9930 0.9964 0.9955 0.9945 0.9955 0.9940 0.9958 0.9949

Es
sa

y Every 50% Text 1.0000 0.9990 0.9965 0.9970 0.9994 0.9975 0.9995 0.9975 0.9975 0.9984 0.9980
Every 25% Text 1.0000 0.9990 0.9985 0.9980 0.9994 0.9965 0.9990 0.9985 0.9980 0.9990 0.9980

Every 10% Text (In Paper) 1.0000 0.9990 0.9985 0.9970 0.9994 0.9965 0.9990 0.9990 0.9980 0.9988 0.9981

C
od

e Every 50% Text 0.8564 0.8790 0.7706 0.5933 0.6479 0.8798 0.8752 0.9211 0.8427 0.7495 0.8797
Every 25% Text 0.9532 0.9333 0.8115 0.6184 0.7088 0.9363 0.9322 0.9470 0.8856 0.8050 0.9252

Every 10% Text (In Paper) 0.9665 0.9655 0.8528 0.6069 0.7809 0.9659 0.9464 0.9691 0.9250 0.8345 0.9516

Table 7: Performance results when not using the completion prompt in BISCOPE.
Normal Dataset Paraphrased Dataset Normal Paraphrased

Method Turbo
GPT-3.5

Turbo
GPT-4

Sonnet
Claude-3

Opus
Claude-3

1.0-pro
Gemini

Turbo
GPT-3.5

Turbo
GPT-4

Sonnet
Claude-3

Opus
Claude-3 Avg. Avg.

A
rx

iv w/o Completion Prompt 0.9813 0.9914 0.9767 0.9900 0.9692 0.9714 0.9855 0.9621 0.9766 0.9817 0.9739

w/ Completion Prompt 0.9870 0.9928 0.9796 0.9885 0.9708 0.9769 0.9800 0.9625 0.9870 0.9837 0.9766

Ye
lp w/o Completion Prompt 0.9008 0.9471 0.9686 0.9577 0.9523 0.9058 0.9576 0.9872 0.9817 0.9453 0.9581

w/ Completion Prompt 0.9023 0.9405 0.9652 0.9532 0.9486 0.9064 0.9473 0.9814 0.9789 0.9420 0.9535

C
re

at
iv

e w/o Completion Prompt 0.9980 0.9950 0.9950 0.9925 0.9952 0.9945 0.9955 0.9950 0.9940 0.9952 0.9948

w/ Completion Prompt 0.9985 0.9950 0.9960 0.9930 0.9964 0.9955 0.9945 0.9955 0.9940 0.9958 0.9949

Es
sa

y w/o Completion Prompt 1.0000 0.9995 0.9990 0.9975 0.9994 0.9975 0.9990 0.9990 0.9975 0.9991 0.9982

w/ Completion Prompt 1.0000 0.9990 0.9985 0.9970 0.9994 0.9965 0.9990 0.9990 0.9980 0.9988 0.9981

C
od

e w/o Completion Prompt 0.9786 0.9752 0.8327 0.6703 0.7653 0.9720 0.9532 0.9717 0.9210 0.8444 0.9545

w/ Completion Prompt 0.9665 0.9655 0.8528 0.6069 0.7809 0.9659 0.9464 0.9691 0.9250 0.8345 0.9516

Additionally, when using only a single base model, BISCOPE can achieve a processing speed as fast
as 0.03s per sample, outperforming all baseline methods except for RADAR.
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E.2 Detailed Contribution Comparison of Forward and Backward Cross-entropy Losses

Table 5 shows a more concrete comparison between the contributions of FCE and BCE to BISCOPE’s
detection effectiveness. In 21 of 25 cases, BCE is more discriminative compared with FCE (especially
on code dataset), providing sufficient justifications for BISCOPE that introduce the preceding token
information into the detection. Besides, In 16 of the 25 cases, the combination of FCE and BCE
outperforms the FCE only and BCE only versions, supporting the necessity to use the bi-directional
cross-entropy loss calculation method.

E.3 Impact of Different Segmentation Strategies in Multi-point Splitting in BISCOPE

Table 6 presents the ablation results with different segmentation strategies in the multi-point splitting
of BISCOPE. We tested three strategies: splitting at every 50% text length, every 25% text length, and
every 10% text length (as used in our paper). The results indicate that a more fine-grained splitting
interval generally improves BISCOPE’s performance. However, in a small number of cases, a smaller
splitting interval may degrade performance. We choose to use 10% as it achieves the highest detection
scores in most cases while reaching low degradation in corner cases.

E.4 Impact of The Completion Prompt in BISCOPE

Table 7 presents the comparison results when using and not using the completion prompt in BISCOPE.
The results show that in 25 of 45 cases, using the completion prompt performs better. Additionally,
the completion prompt is more compatible with the summary procedure. Thus, we chose to use the
completion prompt in BISCOPE.
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