
MIRROR: Model Inversion for Deep Learning
Network with High Fidelity

Shengwei An†, Guanhong Tao†, Qiuling Xu†, Yingqi Liu†,
Guangyu Shen†, Yuan Yao‡, Jingwei Xu‡, Xiangyu Zhang†

†Department of Computer Science, Purdue University, USA
‡State Key Laboratory for Novel Software Technology, Nanjing University, China

Email: †{an93, taog, xu1230, liu1751, shen447, xyzhang}@cs.purdue.edu, ‡{y.yao, jingweix}@nju.edu.cn

Abstract—Model inversion reverse-engineers input samples
from a given model, and hence poses serious threats to infor-
mation confidentiality. We propose a novel inversion technique
based on StyleGAN, whose generator has a special architecture
that forces the decomposition of an input to styles of various
granularities such that the model can learn them separately in
training. During sample generation, the generator transforms a
latent value to parameters controlling these styles to compose a
sample. In our inversion, given a target label of some subject
model to invert (e.g., a private face based identity recognition
model), our technique leverages a StyleGAN trained on public
data from the same domain (e.g., a public human face dataset),
uses the gradient descent or genetic search algorithm, together
with distribution based clipping, to find a proper parameteri-
zation of the styles such that the generated sample is correctly
classified to the target label (by the subject model) and recognized
by humans. The results show that our inverted samples have high
fidelity, substantially better than those by existing state-of-the-art
techniques.

I. INTRODUCTION

Given a deep learning (DL) model, model inversion aims to
generate samples for a label of interest. It often assumes knowl-
edge of the subject model’s application domain, for example,
face recognition, but no information of individual labels or
no availability of training samples. White-box model inversion
assumes the model internals, e.g., gradients, are accessible,
whereas black-box inversion considers the subject model a
black-box, e.g., when it is hosted online as a service. Model
inversion may disclose critical information of the target model
and labels, causing serious privacy leakage. For example, if
the attacker successfully inverts a face recognition model used
in access control, he could disguise himself as the inverted
person, causing devastating security breach.

While model inversion for general machine learning mod-
els has a long history [23], [22], [61], [28], [73], [69], DL
model inversion is of particular importance due to the rapidly
growing applications of these models in security-critical tasks.
Early model inversion work such as [22] directly leverages
gradient back-propagation to mutate a random input such
that the subject model classifies the mutated input to the

AMI @CCS’19Figure 14 GMI @CVPR’20Figure 2 DeepInversion @CVPR’20MIA @CCS’15Figure 1,10

Fig. 1: Inversion results of existing methods from their original
papers or the official GitHub repository. In each set, the left
image is the target person and the right one is the inverted
image.

target label. The leftmost set in Figure 1 shows two sample
inversion results from the original paper [22] for a neural
network without hidden layers. Many different methods have
been proposed ever since. The two state-of-the-art white-
box methods are DeepInversion [69] and GMI [73]. The
former is based on the observation that many models have
batch normalization (BN) layers that record the means and
variances of internal feature maps (for the training dataset),
which are leveraged to normalize activation values for better
training/classification performance. DeepInversion enforces a
mutated input to follow the recorded distribution in all the
BN layers. This provides strong regulation during inversion.
The rightmost set in Figure 1 shows two inverted samples
from their official GitHub repository for a ResNet50v1.5 model
trained on ImageNet [46]. Observe that the samples have
many high-fidelity details of the target label. In contrast, GMI
leverages a GAN to invert models. Instead of mutating input,
it mutates the latent value that is fed to the generator of the
GAN to generate the sample. Gradients are back-propagated
from the subject model to the generated input (by the GAN)
and further to the latent value. Since GAN can ensure the
naturalness of generated samples, GMI produces good quality
inversion results as demonstrated by the third set in Figure 1,
which shows the inverted samples from the original paper.
AMI [65] is the state-of-the-art black-box method. It leverages
an auxiliary dataset to learn a generator that can generate
samples based on prediction scores of the target model. The
second set in Figure 1 shows two samples from the original
paper. Observe that the inversion quality degrades a bit due to
its black-box nature. More discussion of related work can be
found in Section VI.

While existing techniques have made substantial progress,
there is still lots of room to improve. Specifically, from the
samples in Figure 1, one can observe that while DeepInversion
can have high fidelity features, these features are often out

Network and Distributed Systems Security (NDSS) Symposium 2022
24-28 April 2022, San Diego, CA, USA
ISBN 1-891562-74-6
https://dx.doi.org/10.14722/ndss.2022.24335
www.ndss-symposium.org

of place. This is because although BN layers record statistics
for individual feature maps, they do not provide enough
constraints across features, e.g., their relative locations. In
addition, some of the details may not be that realistic as it is
not like GAN, which is trained to capture natural distributions
of features in all aspects. GMI shows great potential. However,
it only supports low-resolution inversion. According to our
experience, when the resolution becomes higher, the latent
space is too sparse such that direct optimization in the space
becomes under-constrained. In addition, the latent space of
regular GANs is known to have substantial entanglement [34],
meaning features do not have locality. As such, it becomes
difficult for the optimization to find a good minimal. In
Section III, we will discuss in details the limitations of the
state-of-the-art solutions.

We propose a new GAN based inversion technique. We
observe there are a number of prominent challenges in using
GANs for model inversion. We find the entanglement in the
latent space makes it not an ideal space for optimization,
especially when the space is sparse. A plausible idea of using
the discriminator of GAN, which is supposed to distinguish
generated samples and natural samples, to ensure naturalness
of inversion results is problematic as the discriminator is
closely coupled with the corresponding generator and cannot
serve as a general classifier of naturalness. We hence propose
to use a StyleGAN generator, which generates a realistic
sample from a latent value controlling the parameterized re-
composition of a set of nicely decomposed features/styles.
The decomposition is enforced in training by the structure of
StyleGAN (to enable re-composition in generation). During
inversion, given a subject model (e.g., a private face based
identity recognition system) and a StyleGAN pre-trained on
public data from the domain of the subject model (e.g., public
face dataset), gradient back-propagation or a genetic algorithm
can be used to search for the best parameterization for the
StyleGAN generator that can lead to a generated sample caus-
ing the subject model and humans to classify to the target label.
To improve the image quality, we further propose to regulate
the optimization/search in an auxiliary space in the StyleGAN
that follows a multi-variate Gaussian (MVG) distribution. To
improve fidelity (i.e., the inverted images should resemble the
target label), we utilize random drop-out to mitigate feature
overfitting that commonly exists in subject models.

Our contributions are summarized as follows.

• We study challenges in GAN-based model inversion.

• We propose to use StyleGAN for model inversion. Our
inversion method features additional regulation in an
auxiliary space and the support for both white-box and
black-box settings. In the black-box setting, instead of
using gradients, we use a genetic algorithm to search
for minimals.

• We develop a novel random drop-out method to miti-
gate feature outfitting in the subject model that could
degrade inversion fidelity.

• We explore a large design space of GAN-based and
StyleGAN-based inversion and report our findings.

• We build a prototype MIRROR (Model InveRsion for
deep leaRning NetwORk) in PyTorch. Our evaluation

on 6 models and 3 widely used face datasets shows
our approach can invert models with high fidelity,
generating samples that closely resemble the target
labels. Our user study shows that on average 88.4%
users prefer our inversion results to those by existing
techniques. When mixing the inverted image of a
person with a set of images that closely resemble the
person, 89.29% users can correctly select the inverted
image from the others. Our quantitative analysis shows
that the inverted samples have on average 15x better
generalizability compared to existing state-of-the-art
methods, meaning that the inverted samples have 15x
times better classification accuracy (to the target label)
by other models different from the subject models. We
also test our black-box approach on two commercial
services: the Azure face recognition service [1] and
Clarifai [2]. Our approach achieves 100% effective-
ness (i.e., the inverted samples are 100% classified
to the target labels by the subject model) and 50%+
generalizability (50%+ by another model), while the
state-of-the-art black-box method has close to 0 ef-
fectiveness and generalizability. Moreover, MIRROR
outperforms existing methods in a number of image
quality metrics. Besides face recognition models, we
also show MIRROR can produce high quality inver-
sion results on other datasets (e.g., cars and cats) and
models. Our approach can successfully attack models
trained with several existing defense methods includ-
ing adversarial training against adversarial samples,
information regularization against model inversion
and differential privacy against membership inference.
MIRROR will be open-sourced upon publication on
our project page [7].

Threat Model. Our threat model is consistent with that in
existing works [73], [65], [69]. We assume attackers know the
application domain of the subject model and there is public
data available for the domain. Note that the public data may
not overlap at all with the private data used to train the subject
model. The assumption is reasonable as real-world applications
of DL models are likely rooted at data from the physical
world. Attackers can hence sample from the physical world
to support their StyleGAN training. In the white-box setting,
we assume attackers have access to model internals. But they
have no other information such as label specific information
or specific training data. In the black-box setting, they do not
have the access to model. The subject models are normally
trained without specific hardening (e.g., to prevent inversion).
Although we demonstrate that MIRROR is resilient to existing
hardening methods, how to better defend model inversion will
be our future work.

II. BACKGROUND: STYLEGANS

StyleGAN was originally proposed in [34] and later im-
proved in [35]. While generators in traditional GANs directly
map latent vectors to samples, generators in StyleGANs first
map an initial latent vector to an intermediate latent vector
which is further transformed (via simple functions) to styles
at different granularities. These styles shape an average sample
denoted by a constant input to the convolutional layers (e.g.,
an average face) to a specific sample (e.g., a face with

2

 space!

 space"

 space#

w ∈ !

z ∈ "

⋯
FC

 Leaky ReLU

 Mapping network f

 or w w+

StyleGAN

Target
classifier

0.1
0.6
0.2
0.1

0.6

logits

Cross-Entropy
loss

label
score

grad. based optim.

Search
algorithm

e.g. genetic
algorithm

White-box attack

Black-box attack

Noise

clip

1

2 3

4

4

55

6

′

′

…

Target classifier
with random dropout

w ∈ !

z ∈ "

FC
 Leaky ReLU

FC
 Leaky ReLU

⋯

 Mapping network f

A

 or w w+

StyleGAN

B

B

A

Synthesis network g
Const

4 4×
Style block

8 8×
Style block

style

style

1024 1024×
Style block

⋯
A B

style

Noise

1

2

Synthesis network g

Style blocks
4 4

|
1024 1024

×
×

Fig. 2: Architecture of StyleGAN

Distribution of features Distribution of !Distribution of " Distribution of #
(a) (b) (c) (d)

Fig. 3: Real-world Feature Space in (a) and Different
GAN/StyleGAN Spaces in (b)-(d). They have different levels
of entanglement and different distributions.

personalized features). The intermediate latent space is known
to be less entangled [34], [35].

Figure 2 shows the architecture of a StyleGAN generator.
Its two main components are the mapping network f (on the
left) and the synthesis network g (on the right). Network f
consists of several fully connected layers with the leaky ReLU
activation functions; g is composed of multiple style blocks
with various resolution scales (e.g., 42 to 10242). Each style
block has two convolutional layers like that in a typical CNN.
The difference is that the styles of the feature maps in each
block are controlled (by the input from a square A), and the
values are perturbed by random noises (from the input from
a square B). In the literature, the means and variances of
feature maps are believed to encode styles [30]. As such, style
application is achieved by mutating the means and variances
of the feature maps.

Specifically, in step 1 , a latent vector z is sampled from
the Z space (e.g., Gaussian distribution) and provided to the
mapping network f . Function f(z) produces an intermediate
latent vector w (all w’s form the W space). In step 2 , w
is duplicated and sent to every style block in g to synthesize
the sample. The square A at each style block denotes a linear
layer that transforms w to styles and the square B adjusts the
strength of random noises. Formally, the style-based generator
returns an image x = g(f(z)). During training, the parameters
in f , g, A, and B are updated.

Figure 3 (a)-(c) illustrate the conceptual differences be-
tween traditional GAN and StyleGAN, by showing the dis-
tribution of samples that share similar features (e.g., faces

sharing similar nose shapes) in different designs. Each color
represents a feature. A pixel with a specific color denotes a
sample with a specific feature. In (a), natural samples sharing
similar features are close to each other. However in (b), i.e.,
the Z space in classic GANs, they are distributed in numerous
small local regions. In other words, features are entangled. In
StyleGAN, after the f transformation, the features are largely
disentangled in the intermediate W space as shown in (c).
The disentanglement is achieved by the special architecture
of StyleGAN during training. In particular, the A blocks are
linear functions whose outputs directly control the means and
variances of feature maps. The separation of the style blocks
with different resolutions structurally decomposes a sample
to styles, which are essentially features of different levels of
complexity. If the network converges in training, a w value
must be disentangled in a way that its linear projections
(through the A blocks) control parameterizations of the various
features. Please refer to the original papers [34], [35] for more
details.

III. MOTIVATION

This section shows and analyzes the limitations of ex-
isting state-of-the-art inversion methods, and thus motivates
our work. We will leverage the sample results in Figure 4
to provide an intuitive comparison of different methods and
demonstrate that our method outperforms the existing ones.
Each row in the figure shows the results of a person inverted
by different methods. Each inverted image is annotated with
the classification confidence to the target person by the model.
Two real images of each target person are provided as the
ground truth for comparison. For brevity, we use M and t to
denote the model and the target label to invert, respectively.
Given M and t, the goal of model inversion is to generate an
image x such that humans or machines consider x an image
of t.

A. Existing White-box Inversion Methods

Two current state-of-the-art white-box approaches are
DeepInversion [69] and GMI [73].

DeepInversion. DeepInversion leverages a loss to constrain
internal features in batch normalization (BN) layers. During
training, the parameters of prior layers keep updating and
therefore the input distributions of subsequent layers keep
changing. BN layers were proposed to address this so-called
“internal covariate shift” to accelerate training [31]. A BN
layer maintains the running mean and variance observed over
the batches of training data. It normalizes the output distri-
bution of a prior layer to obtain an internal distribution with
the mean of 0 and variance of 1 so that the following layer
has a more stable input distribution. If we feed a batch of real
input data to the network, the statistics of the internal features
should be similar to those stored in the BN layers. These means
and variances are used to regularize the feature distributions
of inverted inputs such that they are close to the distributions
of real inputs. Specifically, in addition to the cross-entropy
(CE) loss which enforces the inverted images to be correctly
classified as the target label, the internal constraints minimize
the `2 distance between the variance (resp. mean) calculated
by a batch of inputs to optimize and the running variance (resp.

3

Ours GMI Target person AMI Ours
White-box inversion Black-box inversion

Nearest sample Nearest CelebaDI 0.01var DI

Fig. 4: Comparison with existing state-of-the-art methods under white-box and black-box settings. Each row corresponds to a
person. The target people in first and second rows exist in the training data of inversion methods, while the others are not. The
first to fourth columns show the white-box inversion results of our method, existing GMI and DeepInversion. The fifth and sixth
columns show two real images for each target person. The seventh and eighth columns show the black-box inversion results of
existing AMI and our method. The number in each inverted image denotes the classification confidence.

mean) stored in each BN layer. The goal of DeepInversion is
to find argminx Loss(M(x), t).

DeepInversion cannot be directly applied to models without
BN layers (e.g., VGG16 and SphereFace). Inverted images are
usually not as natural as generator-based methods like GMI
and MIRROR as shown by Figure 4. The fourth column shows
the images inverted by DeepInversion using its default param-
eters. They look like random noises. After tuning the param-
eters, the best results we can get are achieved by multiplying
0.01 with the `2 distance of variances and the corresponding
results are shown in the third column. Although some facial
features can be inverted, there are also multiple overlapping
faces and misplaced eyes. Such results are consistent with what
DeepInversion originally generated for a ResNet50v1.5 pre-
trained on ImageNet shown in Figure 1. This phenomenon
is not beyond expectation. Models are usually trained to
learn correlations between features and outputs, and may not
learn the relative constraints across features (e.g., their relative
positions). As such, the use of normalization statistics allows
inverting individual normal features but does not sufficiently
constrain their compositions. This is sufficient for the original
goal of DeepInversion, which is data augmentation, but not for
inverting human-recognizable faces. We have explored many
ways to enhance DeepInversion, by adding more constraints
to enforce various properties of inverted faces, such as exactly
two eyes and one nose at the correct position of a face.
However, these results (in our online Appendix XI [7]) are
still not comparable to those based on generators.

GMI. GANs are able to generate in-distribution inputs. For
instance, a GAN trained on a human face dataset is capable
of generating natural human faces. Hence, an idea is to use a
pre-trained GAN to regulate the inverted results, in addition
to the subject model. A GAN contains a pair of a generative
network G and a discriminative network D. G and D are
trained in an alternative and competitive way. The goal of D
is to distinguish the fake images generated by G from the real
images. The goal of G is to generate images from a pre-defined
latent space to fool D. After convergence, G usually is able to
generate in-distribution random inputs (e.g., random human
faces). In contrast to DeepInversion which directly optimizes
the input image, GMI optimizes the latent vector z to generate
an image G(z) so that M classifies G(z) as label t and D
considers it a real image. That is, the goal of GMI is to find
x = G(z) where z = argminz Loss(M(G(z)), t). The latent
space has fewer dimensions than the image space (e.g., 100 vs.
3× 642). Observe in Figure 4 that the faces inverted by GMI
are more human-recognizable than those by DeepInversion
and some of them do possess features of the target persons.
However, there are also two limitations of GMI caused by its
traditional GAN architecture: 1) inverted images are of low
resolution 64 × 64 and thus the facial characteristics are too
blurry to disclose needed information (for the attacker); 2) the
latent space is entangled [34], meaning that features do not
have locality in the space such that exploration of the space is
very likely stuck in numerous local optimals, leading to low-
quality images that do not resemble the target person as shown
by Figure 4 and Figure 13. A straight-forward idea to solve

4

the first problem is employing a more capable GAN such as
PGGAN (3 × 10242) [32]. However, as shown by Figure 13
and Figure 26 (in online Appendix [7]), without solving the
second problem, the high-resolution inverted images are still
unnatural and unlike the target persons.

B. Existing Black-box Inversion Methods

The existing state-of-the-art black-box inversion method is
AMI [65], which is based on a generative network. To invert a
label t, AMI feeds a one-hot vector (i.e., a vector with all 0 but
1 at the t-th element) to a generative model. Different from the
generative model in GMI which learns a mapping from latent
values to images, here it learns a mapping from the prediction
scores to the training images from an auxiliary dataset. The
prediction scores are acquired by querying the target model
with the training images. The training goal is to minimize
the mean squared error (MSE) between the generated images
and the training images in the auxiliary dataset. The images
inverted by AMI in Figure 4 reveal its limitations: 1) inverted
images are blurry average faces and disclose little information
of the target labels; 2) the low classification confidence means
the target model does not recognize the inverted images as the
target persons; 3) many target labels cannot be inverted. The
first limitation is due to the low capability of its generative
model (3 × 642) and the use of MSE loss, which focuses on
smoothing the detailed areas of generated images to achieve
more pixel-wise correctness [42]. Since the technique aims to
use a mapping learned from an auxiliary dataset to invert labels
from an unseen dataset, it is critical for the model to learn
human face features that can be decomposed and generalized.
However, the simple MSE loss on the auxiliary dataset does
not seem to enforce that.

C. Our Solution

To overcome the issues of weak generative networks
and entangled latent spaces, we propose to use StyleGANs
(3×10242) [34], [35]. StyleGAN has a special architecture that
substantially mitigates entanglement and decomposes features
to styles that can be controlled separately to generate different
outputs. To leverage StyleGAN for inversion, a simple idea
is to optimize in the (disentangled) W space to generate a
natural input that is classified to the target label, and avoid
optimizing in the entangled Z space. However, although the
W space is less entangled, its distribution is difficult to
model, as demonstrated by the irregular shape of the space in
Figure 3 (c). As such, it is difficult to prevent the optimization
from going beyond the distribution, leading to undesirable
inversion results. We hence propose to regulate at an internal
space that is very close to W but having a multi-variate
Gaussian distribution. As such, on one hand, we can benefit
from the W space’s capabilities of controlling features/styles;
on the other hand, we can easily ensure such controls are
within distribution. In the black-box setting, we apply a search
algorithm (e.g., genetic algorithm) to explore theW space with
similar regularization. Directly using StyleGANs sometimes
generates inverted samples that do not resemble the target
label (e.g., wrong gender) even though the subject model
classifies the samples to the target label with high confidence.
This is often due to low level feature biases in the original
training set of the subject model which causes the model

to undesirably learn strong connections between the target
label t and some low level features. As such, during inversion
StyleGAN may generate a face that possesses the features but
does not resemble t in humans’ eyes. To address the problem,
we randomly drop out neurons in the subject model during
inversion. As such, the inverted samples that resemble t stand
out over time (see Section IV-B and V-C6).

From Figure 4, the images inverted by our method have
finer-grained facial characteristics and are much more similar
to the target people. Consider the person in the first row.
Observe that his unique features include the eyes (and eye
brows), nose, and hair style. His smile lines are kind of special
too. They are faithfully captured by our inversion results in
both settings. In contrast, the GMI result catches the eye shape
and the beard. But the rest is blurry and non-distinguishing.
The DeepInversion result catches the nose but the face is very
scrambled. The females in the second and the fourth rows are
similar to each other (by looking at the ground-truth samples).
The differences lie in that the former has a relatively more
pointy nose while the latter has a relatively round one, and
the latter has very obvious double eyelids whereas the former
does not. Their smile lines are also different. Our inversion
results clearly capture these differences. In contrast, none of
the other techniques can disclose such details. Our results for
the black male in the third row faithfully reveal his skin color,
nose shape, lip shape, cheek lines, eyeglasses, and bald hair.
In contrast, the best result from other methods (i.e., the one
by GMI) lacks a lot of details. Another observation is that the
subject model produces close to 1.0 classification confidence
for the results by most white-box methods despite the obvious
quality difference. It indicates that cross-entropy loss is not a
deciding factor for the quality.

As we will show in Section V-D, our technique can invert
models on various kinds of data (in addition to human faces)
with high fidelity. These results suggest that if DL models
are operating on sensitive data, privacy leakage is indeed a
serious and practical concern. A large set of inverted samples
are provided at [7] for interested readers.

IV. DESIGN

Figure 5 presents an overview of MIRROR. The top dash
frame illustrates a StyleGAN that transforms an initial latent
space Z (at 1) to an intermediate space W (at 2) which
is used to parameterize styles and synthesize images (at 3).
The top and middle dash frames together illustrate white-
box inversion. Starting from the initial w (at 2), StyleGAN
generates a sample (at 3) which is fed to the target model to
get the output (at 4). MIRROR randomly dropouts neurons
(denoted by the white squares) in the target model during
classification to mitigate low level feature overfitting. It then
computes the classification loss and uses a gradient-decent
method to optimize w to minimize the loss (5). To ensure
the quality of inverted images, it regularizes w at step 6 ,
which is a detour from the W space to a P space (which will
be defined in Section IV-B) and then back to W . The loop
2 3 4 5 6 terminates when the inversion succeeds or the

maximal epochs are reached. Note that the Z space and the
mapping network f (at 1) are excluded in the process.

The top and the bottom frames in Figure 5 denote the
pipeline for black-box inversion. At 4′ , the attacker can only

5

 space!

 space"

 space#

w ∈ !

z ∈ "

⋯
FC

 Leaky ReLU

 Mapping network f

 or w w+

StyleGAN

Target
classifier

0.1
0.6
0.2
0.1

0.6

logits

Cross-Entropy
loss

label
score

grad. based optim.

Search
algorithm

e.g. genetic
algorithm

White-box attack

Black-box attack

Noise

clip

1

2 3

4

4

55

6

′

′

…

Target classifier
with random dropout

w ∈ !

z ∈ "

FC
 Leaky ReLU

FC
 Leaky ReLU

⋯

 Mapping network f

A

 or w w+

StyleGAN

B

B

A

Synthesis network g
Const

4 4×
Style block

8 8×
Style block

style

style

1024 1024×
Style block

⋯
A B

style

Noise

1

2

Synthesis network g

Style blocks
4 4

|
1024 1024

×
×

Fig. 5: Architecture of Our Approach

access the target label score instead of values of the whole
output layer and gradients. Step 5′ utilizes a genetic algorithm
to find w that can improve the score.

A. Observations in Using GANs for Model Inversion

Our inversion method is based on GANs. While the idea
of using GAN to invert class labels is not new, e.g., GMI [73],
we find that if not done properly, it produces results of poor
quality. We have explored various design choices and some
results are presented in online Appendix VII and VIII [7]. In
this subsection, we discuss a number of observations we have
made in the exploration. They lead to our final design.

1) Optimization in the Z Space is Ineffective: A basic
assumption of GAN is that samples in a natural domain follow
a Gaussian distribution such that the generator is essentially a
mapping from z values with a Gaussian distribution to the nat-
ural domain. Therefore, given a class label, a straightforward
idea followed by existing GAN-based inversion methods is to
optimize the z vector to yield the minimum loss. The inverted
image is hence the one produced by the GAN generator from
the z vector. In order to enforce the naturalness of generated
images, they clip z vectors based on the (Gaussian) distribution
of Z space. However, we find that the nature of Z space makes
it difficult to achieve good results.

Figure 6 illustrates an example inversion procedure search-
ing the Z space of StyleGAN [34]. The goal is to invert
label 38 of a ResNet50 model pre-trained on VGGFace2.
Two images of the target person are shown on the right-
bottom. We first randomly sample 2000 z vectors following
the Gaussian distribution. They correspond to a set of normal
images generated by the GAN. They are the green data points
in the dense area (B.1). We then select 6 images that the target
model has the highest confidence for label 38 as the starting
images for optimization. They are denoted by the unique
symbols as shown in the legend at the top-right corner of (B).

For each starting image, we run two kinds of optimization: 1)
with clipping z to 0±1; 2) without clipping. Each data point
generated at an optimization iteration is colored based on the
strategy (red for with clipping and gray for without clipping)
and has the symbol of its origin. The color is gradually
lightened as the number of iterations grows. As such, the data
points of the same symbol form an optimization path. We also
show the corresponding (face) images for a set of data points.
Each image is annotated with a number denoting the hundredth
step (in optimization) and its symbol. For example, the image
at (B.2) denotes a face generated after 70000 optimization
iterations, starting from the initial face with the same star
symbol in (B.0). As the dense area is too crowded, we provide
three zoom-in views on the left. For example, the (A.1) view
presents the inversion results with clipping after 5700, 5800,
and 20000 steps.

From Figure 6, we have a number of observations. 1)
By comparing the greyish data points (of different symbols),
which denote the optimization results without clipping and
are distant from the dense area (B.1), with their reddish
counterparts with clipping in (A.1) and (A.2), we can see
clipping helps confine vectors to the dense area. Specifically,
observe the optimization path of the grey star symbol, i.e., the
path containing (B.2). The images become scrambled when the
optimization goes beyond the normal zone (e.g., at step 4900).
2) Even the confined images corresponding to the reddish data
points in (A.1) and (A.2) may become unrecognizable too.
Observe the 4 images in (A.3). They fall well within the dense
area but three of them are not human recognizable. In other
words, not all data points in the distribution denote natural
faces. Just like adversarial samples close to an input of a certain
label can be classified to other labels, the latent space of a GAN
is not robust either, namely, the close-by values of a latent
value denoting a natural face may not represent natural faces.
As such, Z space clipping is a weak constraint for generating
human recognizable faces. GMI uses a strategy of having a
small number of optimization steps, trying to mitigate the
problem. However, 3) a small number of optimization steps
do not sufficiently search the space such that the resulting
images do not deviate from the starting images much and do
not resemble the target person. 4) The regions denoting the
target label’s features are scattering in the entire Z space. Note
that all the optimization results (with different symbols) are for
the inversion of the same person although they are distributed
in the whole space.

The literature has pointed out that the Z space is highly
entangled [34]. In our context of model inversion, it means
that similar features do not have locality and distribute in
numerous and separated areas in the space. As such, it is
very difficult for the optimization to find the global minimal.
Figure 3 provides a conceptual illustration. The circle in (a)
denotes the natural domain in a Gaussian distribution. Each
color denotes a kind of feature. Observe that they have locality.
The transitions between colors are smooth, denoting samples
possessing combinations of multiple features. In other words,
naturally similar samples are close to each other. In contrast,
figure (b) denotes the Z space of a standard GAN. Observe that
there is no locality of colors. Instead, they scatter in numerous
small areas. While such an entangled space does not affect
generation, it indeed makes inversion highly challenging.

6

7048

49

200

200

139

200

Magnified

Magnified

Magnified

Zoom
 in

Zoom in

Zoom in

A B

A.1

A.2

A.3

B.1

B.2
200

106

200

107

200

200

B.0 Starting images
(random samples with high confidences)

0

0

0

0

0

0138

!
 & clip!

Iteration increasing

Random sample

6 starting points

A point’s color and symbol

58

57

200

Annotations explanation

(A) Zoomed-in views of the dense area (B.1).

(A.1)-(A.2) Two optimization paths with
and clipping.

(A.3) Data points (and the corresponding
faces) at the 20000th iteration at the end of
four optimizations with clipping.

(B) Data points in 2D by PCA.

(B.0) Faces corresponding to the initial data
points.

(B.1) Dense area (values in the dense area
of multivariate Gaussian distribution).

(B.2) A data point without clipping.

!

z

Target person

Fig. 6: Model inversion in the Z space. We invert images for a target person (as shown in the bottom-right) with 2 different
strategies (i.e., with and without clipping), starting from 6 random z values denoting 6 random faces. The optimization derives
a z value at each iteration. We present these values inside B after reducing them to 2-dimensional data points. As shown by
the shaded legend in the top-right corner, data points originating from the different starting points are denoted with six unique
symbols. The data points generated by the two optimization strategies have red and gray colors, respectively, with the different
color scales denoting the optimization iterations. Therefore, all the data points starting from the same initial value form an
optimization path in the space with the same symbol of a gradually lightened color. We also display the corresponding faces for
a selected subset of data points. Each image is tagged with a number denoting the hundredth iterations (e.g., 70 meaning the
7000th iteration) and the symbol denoting the initial data point. The dense area B.1 is enlarged to A.1, A.2 and A.3 on the left
for better visibility.

2) Pre-trained Discriminator Cannot Enforce Naturalness:
During a GAN’s training, a discriminative network D com-
petes with a generative network G. The optimization goal is
to find a fixed point of a two-player min-max game:

min
G

max
D

Ex[logD(x)] + Ez[log(1−D(G(z)))] ,

where x is sampled from real images and z is sampled from
the latent space (e.g., a Gaussian distribution).

After a pair of G and D is trained, a plausible idea
of ensuring generation of high-quality faces is to use D,
like in a number of GAN-based inversion methods (e.g.,
GMI). Particularly, the inverted images and a set of random
natural images are fed to D to compute a discriminative loss
log(1−D(G(z))), which is supposed to gauge the differences
between the sets. However, it’s not effective based on our
study. The GMI results in Figure 4 are not particularly of
good quality. In addition, removing the discriminative loss
from GMI or enlarging its weight has little effect on the
result (online Appendix VIII [7]). These indicate pre-trained
discriminators can hardly ensure quality during inversion
despite its conceptual feasibility.

We conduct an experiment to further study the underlying
reasons. Figure 7 shows a set of images with various levels
of quality (in humans’ eyes) in an ascending order of dis-

-0.1302 0.1675 0.2367-0.2721

-0.5148

-0.1510

-0.7613 -0.3517 -0.3455-0.8244

-1.1137 -0.8538-0.8742-1.0906-1.1367

CelebA CelebA CelebA

VGGFACE

VGGFACEVGGFACE

AMI

AMI

AMI

GMIGMIGMI

Ours Ours Ours

Fig. 7: Discriminative loss on images of various qualities.
Lower discriminative losses are usually believed to be related
to more natural images. However, it is not true.

criminative loss based on the discriminator in a pre-trained
StyleGAN. The number in each image shows its discrimina-
tive loss and the text denotes its source. CelebA means the
StyleGAN’s training data. VGGFACE denotes the VGGFACE
dataset. Images annotated with GMI/AMI/Ours are inverted
by GMI/AMI/Ours. People usually think images with a lower
discriminative loss are more real. However, it’s not the case as
shown in this figure. For example, the blurry images inverted
by AMI and GMI have much smaller discriminative loss than
the CelebA data. We speculate that although conceptually D is
to distinguish in-distribution (natural) and out-of-distribution
(unnatural) samples, it is indeed to distinguish two sets of

7

red: w no clip
blue: w simple clip

in w space

200

200
200

200
200

200

200
200

200

200

200 200
200

200

200

200

A.1

 & simple clip!
!

Iteration increasing
Random sample

8 starting points
A point’s color and symbol

A.2

A.3

Target person

Fig. 8: Model inversion in the W space. The w vectors are reduced to 2D by Principal component analysis (PCA) and denoted
as data points in the figure. Inversion starts from 8 initial values denoted by 8 different symbols as shown in A.2. The data
points in green denote 2,000 w latent vectors obtained by sampling in the Z space. We use red to denote optimization without
clipping and blue with simple clipping which clips w’s dimensions based on their range profiles (see A.3). Images corresponding
to latent vectors at the last 20000th iteration are displayed. The number and symbol in each image denote the hundredth step
(of optimization) and its origin, respectively. The optimization goal and starting points are the same as Figure 6 but here we use
W space. The paths with different scales of blue/red color denote the optimization paths.

samples: one from the generator and the other from the natural
domain. Close to the end of training, G already learns to
generate highly realistic samples such that D tends to learn low
level feature differences between G’s outputs and the natural
samples. That is, it is refining the details. As such, D does
not serve well in making a high level decision if a sample is
natural. We have also tried to use a D from a half-way trained
GAN. The results are not better. We speculate that the design
of standard GAN training would only produce D’s that can
improve the corresponding G’s. These D’s are not classifiers
of naturalness in general.

The two observations render a naive application of GAN
in model inversion ineffective and motivate our design.

B. White-box Inversion in MIRROR

W Space Is Disentangled but Not Normal. Since the W
space is disentangled, a straightforward method is to directly
optimize w to invert a label. However, we find that such a
simple design hardly works. Figure 8 shows the W space
and the inversion procedure of a target person in the space.
The V shape of the green samples (i.e., the w values of
2000 Gaussian samples acquired from the Z space denoting
normal persons) indicates that these samples do not follow a
Gaussian distribution in W . As such, while the optimization
is able to explore localized areas (due to disentanglement),
the resulting samples (after 20000 steps) have substantially
degraded quality as they are out of distribution. Due to
the same reason, range based clippings do not work either
because such clippings may introduce substantial bias when
the underlying distribution is not isotropic Gaussian [16]. More
results can be found in Figure 31 in online Appendix X [7].

Regulation by Clipping in Multi-variate Gaussian P Space.
W does not follow a Gaussian distribution. Neither are the
individual dimensions of a w vector. The third distribution
from the top in the left of Figure 5 shows a typical distribution

 Mapping network f

FC

 Leaky ReLU

FC

 Leaky ReLU

 space𝒫

FC

 Leaky ReLU

FC

 Leaky ReLU

FC

 Leaky ReLU

FC

 Leaky ReLU

FC

 Leaky ReLU

FC

 Leaky ReLU

8th FC

 Leaky ReLU

7th FC

 Leaky ReLU

 space𝒫

1st FC
 Leaky ReLU

⋯

 Mapping network f

Fig. 9: Histogram and Q-Q plot.

of w dimension. The irregular distribution is due to the leaky
ReLU operation [63]. In contrast, the values of individual di-
mensions before the leaky ReLU follow Gaussian distributions.
It is called the P space and it has a multi-variate Gaussian
distribution. Figure 9 shows the histograms and Quantile-
Quantile (Q-Q) plots [45] of a random dimension of the spaces
before/after the last two LeakyReLU layers of StyleGAN’s
mapping network. A Q-Q plot compares two distributions by
plotting their quantiles. If the plotted dots fall approximately
along the 45-degree reference line, then the two distributions
are similar. Here we compare the distribution of the selected
dimension against a Gaussian distribution with its computed
mean and standard deviation. We can see the spaces before
LeakyReLU are Gaussian (the histograms being bell-shaped
and the dots aligning well with the reference line) while those
after LeakyRLU are not. We use P to denote the space before
the last LeakyReLU. We regularize latent vectors w in P
because it’s the closest to the W space and it’s the deepest
space satisfying Gaussian distribution. The StyleGAN paper
claimed deeper mapping networks perform better and have a
more disentangled space [34]. Note that although the output
of the LeakyReLU preceding the P space is not a Gaussian
distribution, there is a fully-connected layer between it and

8

Algorithm 1 White-box inversion
1: function INVERSION(model M , target t, epoch e, lr η)
2: w1 = INITWSPACE(M , t)
3: wbest, `best = w1,∞
4: for i ∈ {1, . . . , e} do
5: imgi = SYNTHESIZE(wi) . i.e., g(wi)
6: `i = LOSS(M(imgi), t) . e.g., CE Loss
7: if `i < `best then
8: wbest, `best = wi, `i
9: end if

10: wi+1 = wi − η∇w`i
11: pi+1 = TOPSPACE(wi+1)
12: pi+1 = CLIPPSPACE(pi+1)
13: wi+1 = TOWSPACE(pi+1)
14: end for
15: return SYNTHESIZE(wbest) . i.e., g(wi)
16: end function

the P space. The output of a fully-connected layer can be
considered as the weighted average for each input dimension.
According to the central limit theorem [14], it tends toward a
normal distribution. In the literature, as a result of the central
limit theorem, similar Gaussian distributions of outputs before
ReLU layers are observed in ResNet152 [64], while others also
observe Gaussian distributions for network weights [21], [57].

Therefore, we ensure in-distribution optimization as fol-
lows. We take a large number of Gaussian samples from the
Z space and feed them through the mapping network f and
collect their activation values in the P space. From these
activation values, we establish the Gaussian distributions for
individual p dimensions. The following equation denotes the
leaky ReLU operation that transforms a p to the corresponding
w and its inverse function.

LeakyReLU(x) = max(0, x) + 0.2×min(0, x)

LeakyReLU−1(x) = max(0, x) + 5×min(0, x)

Intuitively, it retains the value if it is positive otherwise
multiplies it with a small weight 0.2. In the inverse direction,
it retains the value if it is positive otherwise multiplies it with
a weight value 5, which is 1/0.2. Given an updated w by the
optimization, we regulate it by first projecting it to the P space
(using the inverse leaky ReLU function), clipping its individual
dimensions based on the profiled P space distributions, and
then projecting it back to the W space (using leaky ReLU).
Formally, let w[i] and p[i] denote the i-th dimension of w and
p, with the latter’s distribution being N (µ,σ).

p[i] = LeakyReLU−1(w[i]) (1)
p[i] = max(min(p[i],µ[i] + σ[i]),µ[i]− σ[i]) (2)
w[i] = LeakyReLU(p[i]) (3)

Algorithm. The overall inversion procedure is the one de-
scribed at the beginning of this section. It is formally described
by Algorithm 1. Line 2 first initializes w1 by selecting those
with the highest target confidence from the samples pre-
generated to compute the P space statistics, by calling a
function INITWSPACE(). The function’s definition is elided due
to simplicity. Lines 4-14 execute the inversion loop for e times.
In each iteration i, line 5 calls SYNTHESIZE() to generate
candidate images imgi from wi using the g function of the

Fig. 10: Effects of dropout and consistent selection strategy.
The first column shows two images of each target person. The
odd/even row shows the inversion results without/with dropout
strategy. The final images selected by our consistent selection
strategy are highlighted by green squares. Numbers denote the
target confidence.

generator (step 2 in Figure 5). Line 6 feeds the images to
the target model and computes the loss according to the target
label (steps 3 4). Line 7 records the results with the smallest
loss. Line 10 updates w guided by the gradient decent (step
5). Lines 11-13 regulate w with TOPSPACE, CLIPPSPACE,
TOWSPACE defined in Equations (1), (2), (3), respectively
(step 6). Line 15 produces the image with the best w.

Random Dropout to Mitigate Feature Overfitting. We find
that using the aforementioned inversion algorithm sometimes
may generate samples that largely differ from the target label
(e.g., wrong gender). These samples look natural and are
classified to the target label by the subject model. We speculate
that the subject model overfits on some low-level features such
that the optimization falls into some local optima. We propose
to use random dropout during inversion to mitigate the effects
of overfitting. The idea is that if the neurons denoting those
undesirably strong neurons (for the target label) are dropped,
i.e., their activations set to 0, the optimization can escape
from the local optima. Specifically, in each iteration, MIRROR
randomly selects layers of M and append each of them with
a dropout layer that randomly sets a subset of neurons in the
layer to 0. Figure 10 shows some samples before and after
random dropout. The odd rows are inverted samples of a target
person without dropout while the even ones show those with
dropout. For example, without dropout, the inversion samples
for the first person all have the wrong gender and do not
resemble the target person. With dropout, MIRROR generates
more accurate inversion results.

While dropout allows generating more accurate inversion
results, it cannot exclude the wrong ones. For example, there
are still a few female inverted images in the second row of
Figure 10. Since MIRROR does not have any prior knowledge
of the target label, it needs to determine which image is more
likely the target person. We observe that images corresponding
to local optima (i.e., the wrong inverted images) have more
diverse top-5 labels compared to the correct ones. Note that
both the correct and wrong ones often have the same (high)
top-1 confidence. We hence propose to select the result images
by identifying the largest subset with consistent top-5 labels.

9

Algorithm 2 Black-box genetic inversion
1: function GENINV(model M , target t, size n, epoch e, conf c)
2: generation1 = INITGENERATION(n)
3: for i ∈ {1, . . . , e} do
4: scoresi = COMPUTESCORE(M , generationi)
5: elitei = FINDELITE(generationi, scoresi)
6: if scoresi[elitei] > c then
7: return elitei
8: end if
9: generationi+1 = {elitei}

10: for j ∈ {1, . . . , n− 1} do
11: parent1 = SAMPLE(generationi, scoresi)
12: parent2 = SAMPLE(generationi, scoresi)
13: childj = CROSSOVER(parent1, parent2)
14: childj = MUTATE(childj)
15: pj = TOPSPACE(childj)
16: pj = CLIPPSPACE(pj)
17: childj = TOWSPACE(pj)
18: generationi+1 = generationi+1 ∪ {childi}
19: end for
20: end for
21: return FINDELITE(generatione, scorese)
22: end function

In particular, given a batch of n inverted images for the target
label of model M , we use M to predict top-5 labels for each
inverted image. Given a predefined parameter k <= 5, we
identify the largest subset of the n inverted images that share
at least k common labels in their top-5 labels. We then return
the image with the largest confidence within the subset. We
use k = 2 in this paper. The final images selected by our
consistent selection strategy in Figure 10 are highlighted by
bold squares. Observe that it returns the correct images (when
used together with dropout).

Other Design Choices. Besides the Z , W , and P spaces we
have described, there are other spaces that can be leveraged
for inversion. Discussion and results can be found in online
Appendix I [7].

C. Black-box Inversion

In the black-box setting, gradients are not accessible.
However, with the disentangledW space and the regularization
in the P space, discrete search algorithms can be used to look
for a minimal of the same loss function. Here, we employ
a genetic algorithm [15]. Starting from an initial population
(i.e., a set of initial samples in W), the algorithm derives the
next generation by cross-over and mutation. The former is by
exchanging parts of two arbitrary samples. The latter is by
randomly perturbing individual dimensions of a sample from
the population. The new samples are regulated (in P) and then
fed to the target model to determine their health level, which
is the prediction score. A set of healthy samples are selected
to form the next generation.

Algorithm 2 formally describes the process. Line 2 is
the initialization that provides the first generation of size n.
We sample Z to get a set of latent vectors in W and the
corresponding synthesized images. We query the target model
to find images with the n highest prediction scores and use
the corresponding w vectors as the initial generation. Line 4
describes the fitness function which is the prediction score (a
single value denoting the target label’s confidence). At line 9, it
employs the elitism strategy [15] and adds the elite sample with

the highest fitness score in the current generation (by function
FINDELITE() at line 5) to the next. Lines 10-19 produce
(healthy) offsprings. To produce a better next generation, the
algorithm independently and randomly selects parents from
the current generation with probabilities proportional to their
fitness scores (by function SAMPLE() at lines 11-12). Line
13 denotes the CROSSOVER operation. A child’s dimensions
are composed of dimensions from either parent1 or parent2
based on the probability (p, 1−p) where p is defined as follows
so that the better ones have higher chances to be inherited.

p =
scores[parent1]

scores[parent1] + scores[parent2]

Line 14 denotes the MUTATE operation. To diversify the next
generation and better explore the search space, each dimension
of a child is mutated with a selected probability. Random
perturbations uniformly sampled in the range (−c · σp, c · σp)
are performed, where c is a coefficient to adjust the mutation
strength and σp is the standard deviation in this dimension
of P . Most functions have self-explaining names and their
detailed definitions are omitted.

V. EVALUATION

We evaluate MIRROR and compare with state-of-the-art
approaches on various datasets and models. We also evaluate
it on two commercial face recognition services provided by
Microsoft Azure and Clarifai. An ablation study is conducted
to justify the parameters for our approach. We further show
MIRROR is resilient to several existing defense methods. We
implement MIRROR in PyTorch [51]. Most experiments are
carried out on a server equipped with 256 GB RAM, two Intel
Xeon Silver 4214 2.20GHz 12-core CPUs and eight NVIDIA
Quadro RTX 6000 GPU. We have the full set of inversion
results on Github [7] and we will release our system upon
publication.

A. Experimental Setup

1) Datasets and Models: Table I shows the basic infor-
mation about the 5 datasets and 8 models we use. We use 3
popular face recognition datasets. On each dataset, we select
2 pre-trained models with different architectures. The input
image sizes are 3 × 224 × 224 (Channel×Height×Weight),
3 × 160 × 160 and 3 × 112 × 96. They are much larger than
what can be handled by previous methods: 3×64×64 for GMI
and AMI. In addition, we follow a similar setup as AMI [65]
to evaluate our black-box approach on two commercial facial
recognition services [1], [2]. The services let the user upload
images of different people and later allow the user to call the
API to classify a given sample. We randomly select 8 people
from the VGGFace2 dataset to upload and then use the API to
evaluate the black-box methods. Moreover, we show inversion
results for car brand and model classification with ResNet34
trained on the Stanford Cars dataset [36] and cat/tiger breed
classification with ResNet18 trained on cats from the Oxford-
IIIT Pet dataset [50] and images of Amur tigers [37] and
white tigers. Although car model and cat breed in general
do not constitute sensitive information, our goal is to show
the inversion results have high fidelity such that DL models
processing private information have serious privacy leakage
concerns.

10

TABLE I: Datasets and models on which our approach is evaluated. The two numbers in parentheses after each dataset denote the
number of different identities and the number of images in that dataset. The models below a dataset means they are pre-trained
on the dataset (except the last two columns). For example, “ResNet50” and “InceptionV1” under “VGGFace2” are pre-trained
on the “VGGFace2” dataset and later each of them will be used as the target model while the other is the reference model.

Dataset VGGFace (2,622/2.6M) [49] VGGFace2 (9,131/3.3M) [17] CASIA (10,575/0.5M) [67] Cat+tiger (14/2.8K) [50], [37] Cars (196/16.2K) [36]

Model VGG16 [6] VGG16BN [6] ResNet50 [6] InceptionV1 [3] InceptionV1 [3] SphereFace [4] ResNet18 [26] ResNet34 [26]

Accuracy 97.22 96.29 99.88 99.65 99.05 99.22 93.05 90.30
Parameters 145M 110M 41M 28M 29M 28M 11M 21M
Image size 3×224×224 3×224×224 3×224×224 3×160×160 3×160×160 3×112×96 3×224×224 3×400×400

2) StyleGANs: We mainly use StyleGANs trained by third
parties as our generators. We use a pre-trained StyleGAN
from [55] based on 103,706 images selected from the CelebA
datset [38] for face-recognition tasks, StyleGAN and Style-
GAN2 pre-trained on the FFHQ dataset [34] in our ablation
study, and a StyleGAN pre-tained on portrait art [11] for
additional results. Moreover, we use a pre-trained StyleGAN
from [33] on the the LSUN Car dataset [71] for car model
classification, and a pre-trained model from [33] on the LSUN
Cat dataset [71] for cat breed classification.

3) Non-overlapping Inversion: We only invert the labels
that are not in the StyleGANs’ training datasets unless other-
wise stated. That is, our approach uses StyleGANs to invert
unseen identities. In this section, the results are aggregated by
inverting the first 100 non-overlapping labels of each target
model by default.

4) Baselines: We compare our methods to the state-of-
the-art inversion methods GMI [73] and DeepInversion [69]
in the white-box setting and AMI [65] in the black-box
setting. For DeepInversion, we use three different initialization
settings: random noise/cartoon face/average face denoted by
DIR/DIC/DIA. The last two are proposed by us to enhance
DeepInversion’s effectiveness. To make fair comparison, we
train all the generators using the same dataset as StyleGAN.
We also propose another three baselines: a) optimizing latent
vectors in a traditional but high-resolution PGGAN [32]; b)
simply choosing the images in GAN’s training data with
the highest target confidence; c) sampling z of StyleGAN
and choosing the generated images with the highest target
confidence. We emphasize the last two baselines are necessary
yet neglected by many existing works.

B. Evaluation Metrics

In addition to qualitative evaluation by showcasing images
inverted by different methods, we also employ the following
quantitative metrics as well as human studies.

Inversion Effectiveness (Accuracy). We report the classifica-
tion accuracy of the target model on the inverted images.

Inversion Generalizability (Transferable Accuracy). If the
inverted images indeed reveal the target person’s character-
istics rather than overfit to the target model, they should be
recognized as the target label by other models with different
architectures pre-trained on the same dataset. We hence re-
port accuracy on other models as well. Besides the (top-1)
transferable classification accuracy, we also collect the top-5
accuracy. If the target label appears in the top-5 labels sorted
by prediction confidences, we consider it correct.

Feature Distances. We compute the `2 feature distance be-
tween inverted images and the centroid of target class. Features

are extracted from the penultimate layer of the model, except
for SphereFace for which we use the angle distance because
it’s trained to increase the angular margin between different
features. We also report the feature distance on another model
with different architectures pre-trained on the same dataset as
the target model. The metric is the lower the better.

Natural Image Quality Evaluator (NIQE). NIQE was pro-
posed as a non-reference metric for the perceptual quality
evaluation [43]. It constructs “quality-aware” features from a
natural scene statistic model and fits a multi-variate Gaussian
(MVG) model. Given a test image, it fits another MVG model
and the quality is described by the distance between the two
MVG models. A smaller score means the better perceptual
quality.

Human Study. Because natural images may not pose security
threats if humans cannot perceive them as the target labels,
for the face datasets, we conduct a human study to further
quantify the correctness of the inverted identities. We follow a
user study design from the literature [72]. In the setting, users
are given a real image of the target identity and then asked
to pick one from two inverted images that more resembles
the real image. The two inverted images include one from
our method and the other from a method in comparison.
The order is randomized. These three images will flash on
screen for five seconds. For each comparison setting between
our method and a baseline method, we randomly select 50
identities for evaluation and in total 10900 pairs of identities
are evaluated. There are 218 unique users participating in our
study, and 170 out of 218 are considered valid after removing
data points greater than one standard deviation. Users are given
five warm-up practices before the experiments. A typical user
study sample can be found in Figure 22 in Appendix III-A [7].
In addition to the above comparative human studies, we also
conduct three more human studies to directly evaluate our
results by mixing the inverted image of a target person with 1)
training images of other randomly selected people, 2) images
of other people that most resemble the target person in the
original dataset, and 3) images from CelebA classified as the
target by the subject model, respectively. Details and examples
are in Appendix III-B [7].

C. Inverting Face Recognition Models

1) White-box Inversion Results: Figure 11a shows the in-
version effectiveness of different methods. Except GMI, all the
methods have similar inversion effectiveness, because white-
box inversion methods explicitly consider the classification
loss on the target models. Figure 11b presents the transfer-
able accuracy. Our approach outperforms the state-of-the-art
method GMI on all cases by a large margin. Except for one
model, ours is much superior to vanilla DeepInversion rand.

11

VGG16

VGGFACE

VGG16BN

VGGFACE

ResNet50

VGGFACE2

InceptionV1

VGGFACE2

InceptionV1

CASIA

SphereFace

CASIA

VGG16

VGGFACE

VGG16BN

VGGFACE

ResNet50

VGGFACE2

InceptionV1

VGGFACE2

InceptionV1

CASIA

SphereFace

CASIA

A
cc

ur
ac

y
(%

)
100

80

60

40

20

0

DIR DIC DIA GMI PGGAN Ours

A
cc

ur
ac

y
(%

)

100

80

60

40

20

0

DIR DIC DIA GMI PGGAN Ours

(a) Accuracy on target models.

VGG16

VGGFACE

VGG16BN

VGGFACE

ResNet50

VGGFACE2

InceptionV1

VGGFACE2

InceptionV1

CASIA

SphereFace

CASIA

VGG16

VGGFACE

VGG16BN

VGGFACE

ResNet50

VGGFACE2

InceptionV1

VGGFACE2

InceptionV1

CASIA

SphereFace

CASIA

A
cc

ur
ac

y
(%

)

100

80

60

40

20

0

DIR DIC DIA GMI PGGAN Ours

A
cc

ur
ac

y
(%

)

100

80

60

40

20

0

DIR DIC DIA GMI PGGAN Ours

(b) Top-1/top-5 (dark/light color) accuracy on reference models.
Fig. 11: White-box inversion effectiveness and generalizability. The higher the better. DeepInversion cannot be applied to models
without BatchNorm layers.

TABLE II: Feature distances of images inverted by white-box methods (the lower the better). The two numbers reported for
each setting denote the `2 feature distances on the target model, and the feature distance on the other model pre-trained on the
same dataset, respectively. For example, “149.96” and “147.97”in the cell of row “MIRROR” and column “ResNet50” show
the distances computed on the target “ResNet50” and the reference model “InceptionV1”. DeepInversion cannot be applied to
models without BatchNorm layers.

Method
VGGFace VGGFace2 CASIA

VGG16 VGG16BN ResNet50 InceptionV1 InceptionV1 SphereFace

DIR – 102.67 132.41 161.15 201.16 127.76 174.21 172.06 11.51 –
DIC – 93.05 131.64 149.10 185.35 129.40 171.26 172.27 11.41 –
DIA – 85.26 117.01 150.91 192.95 130.10 172.69 172.50 11.47 –
GMI 110.20 103.41 98.87 104.49 155.25 198.51 143.47 188.23 153.34 12.09 12.20 187.73

PGGAN 139.57 82.35 85.71 96.41 164.10 150.22 130.64 170.47 181.18 10.13 9.06 159.83
MIRROR 97.73 55.41 72.06 80.65 149.96 147.97 119.82 163.84 154.41 9.81 8.96 156.19

With better initialization methods, DIC/DIA perform better but
are still worse than ours on all but one model. Our proposed
PGGAN baseline is already stronger than existing state-of-
the-art methods and it has comparable transfer-accuracy to
ours. Per Figure 13, we suspect PGGAN has comparable
transferable accuracy because it generates sharp and distorted
features of the target. However, the generated faces have
less resemblance to the target (from humans’ perspective) as
indicated by the NIQE results (Table III) and the user-study
(Figure 12) on all the 6 models.

For the (target/transferable) feature distances shown in
Table II, images generated by our approach have the smallest
`2 feature distances on both the target model and the reference
model except its distance is slightly larger than GMI’s for the
target InceptionV1 model trained on CASIA and DIC’s for the
target ResNet50 model trained on VGGFace2. But note that
the distances on the two corresponding reference models are
much smaller.

For the perceptual quality evaluation, The NIQE scores in
Table III for the images inverted by ours are much better.
We also display images inverted by different methods in
Figure 13. We can observe: 1) our images have better quality

and are much more similar to the target people; 2) our
approach generates more consistent images in terms of facial
characteristics and gender.

Figure 12 shows the user study results. The x axis shows
the different datasets. The y axis shows the preference rate
for our samples. That is how many times (in percentage) the
user prefers our inverted sample over the other. Hence, 50%
means that our technique is not better. The center of each
point denotes the average preference and its diameter means
the standard error. Our inverted images are much more favored
by the users during the human study. Note that it is really
hard to design a user study to directly measure how much
given samples resemble a target person. We hence design the

TABLE III: NIQE of images inverted by white-box methods
(the lower the better). DeepInversion cannot be applied to
models without BatchNorm layers.

Method
VGGFace VGGFace2 CASIA

VGG16 VGG16BN ResNet50 InceptionV1 InceptionV1 SphereFace

DIR – 25.67 16.84 18.88 18.87 –
DIC – 6.28 6.38 5.22 5.06 –
DIA – 6.49 5.68 5.21 5.06 –
GMI 6.82 6.78 6.94 6.57 6.76 6.59

PGGAN 5.32 5.17 4.95 5.00 4.74 5.43
MIRROR 3.56 3.59 3.46 3.58 3.56 3.70

Pr
ef

er
en

ce
 o

f O
ur

s

40

50

60

70

80

90

100

Model & Dataset

15 30 45 60 75 90

DIA GMI PGGAN AMI

VGG16
VGGFACE

VGG16BN
VGGFACE

ResNet50
VGGFACE2

InceptionV1
VGGFACE2

InceptionV1
CASIA

SphereFace
CASIA

DIA GMI PGGAN AMI
100

 80

 60

 40

Pr
ef

er
en

ce
 o

f O
ur

s ↑

Fig. 12: Human preference of our images over others (the
higher the better). DeepInversion cannot be applied to models
without BatchNorm layers.

comparative study to show that ours is better than the others.
When we mix the inverted image of a target person with the
training images of other randomly selected people, 95.71%
users can correctly select the target person given the inverted
image. When the inverted images are mixed with those of other
people that most resemble the target person in the original
dataset, the percentage decreases (as expected) to 89.29%,
which is still high. When the inverted images are mixed with
the images from CelebA misclassified as the target person, the
percentage further decreases (as expected) to 78.75%. More
details are in Appendix III-B [7]. Interested readers can refer
to the samples in Figures 13 and 28 (inverted using an art
Style-GAN) in online Appendix and our online repository [7]
for further inspection.

12

Target person

Ours

GMI

PGGAN

DIA

Target person

Ours

GMI

PGGAN

DIA

Target person

Ours

GMI

PGGAN

DIA

Target person
Ours

GMI

PGGAN

DIA

Fig. 13: Images inverted in the white-box setting by our approach MIRROR, GMI, our proposed PGGAN baseline and
DeepInversion initialized with average face (DIA). Our images are not only more human-recognizable and similar to the target
people, but also more consistent in terms of facial characteristics and gender.

TABLE IV: Feature distances of images inverted by black-box methods (the lower the better). Two numbers in a cell correspond
to the `2 feature distance on the target model and the other model pre-trained on the same dataset (except for the two commercial
services whose target feature distances are not computable). For example, “150.27” and “172.03”in the cell of row “MIRROR”
and column “ResNet50” show the distances computed on the target “ResNet50” and the reference model “InceptionV1”. For
MS Azure, we compute the feature distances based on InceptionResnetV1. For Clarifai, we compute the feature distances based
on 24-class VGG16.

Method
VGGFace VGGFace2 CASIA 8-classes

VGG16 VGG16BN ResNet50 InceptionV1 InceptionV1 SphereFace MS Azure Clarifai

AMI 103.10 124.15 125.82 104.73 197.11 234.40 234.95 202.51 188.05 10.89 11.37 198.98 198.51 24.53
MIRROR 90.83 69.05 62.19 85.17 150.25 172.03 130.77 167.86 139.39 10.12 10.09 173.34 176.67 16.66

TABLE V: NIQE of images inverted by black-box methods
(the lower the better).

Method
VGGFace (4.95) VGGFace2 (3.09) CASIA (4.14)

VGG16 VGG16BN ResNet50 InceptionV1 InceptionV1 SphereFace

AMI 4.83 5.10 4.83 4.92 4.84 4.75
MIRROR 3.73 3.78 3.62 3.80 3.72 3.81

2) Black-box Inversion Results: As shown by Figure 14,
our black-box inversion approach is quantitatively much better
than AMI, which has very low inversion effectiveness and
generalizability as we have explained in Section III. Images
inverted by our approach have smaller feature distances in all
cases as shown by Table IV. It’s apparent that our approach
can produce images of higher quality than the blurry images
of AMI, as shown by the NIQE scores in Table V and the
visualized results in Figure 15.

3) Comparison with Choosing Samples with Highest Target
Confidence: We compare our approach with two simple base-
lines which were neglected by many existing works and in fact
outperform the existing state-of-the-art methods in most cases.
The “Celeba” method simply chooses the images in GAN’s
training data with the highest target confidence. Similarly, the
“Sample” method chooses images from a set of pre-generated
images by sampling latent vectors of StyleGAN. As shown by
Figure 16-17 and Table VI, our approach is superior to the two
baselines. We also conduct a user study with 120 unique users
and in total 6000 questions to compare “Celeba”/“Sample”
and ours. On average about 69.07%/68.47% users prefer our
method over the “Celeba”/“Sample”.

4) Commercial Service Inversion Results: To further prove
our approach indeed threatens real-world face recognition
service, we evaluate our black-box inversion approach on

13

ResNet50 InceptionV1 InceptionV1SphereFace

A
cc

ur
ac

y
(%

)
100

80

60

40

20

0

VGGFACE
VGG16BNVGG16

VGGFACE2 CASIA Commercial
Azure Clarifai

AMI Ours

ResNet50 InceptionV1 InceptionV1SphereFace

A
cc

ur
ac

y
(%

)

100

80

60

40

20

0

VGGFACE
VGG16BNVGG16

VGGFACE2 CASIA Commercial
Azure Clarifai

AMI Ours

(a) Accuracy on target models.

ResNet50 InceptionV1 InceptionV1SphereFace

A
cc

ur
ac

y
(%

)
100

80

60

40

20

0

VGGFACE
VGG16BNVGG16

VGGFACE2 CASIA Commercial
Azure Clarifai

AMI Ours

ResNet50 InceptionV1 InceptionV1SphereFace

A
cc

ur
ac

y
(%

)

100

80

60

40

20

0

VGGFACE
VGG16BNVGG16

VGGFACE2 CASIA Commercial
Azure Clarifai

AMI Ours

(b) Top-1/top-5 (dark/light color) accuracy on reference models.
Fig. 14: Black-box inversion effectiveness and generalizability. The higher the better.

G
ro

un
d

tru
th

A
M

I
O

ur
s

Fig. 15: Images inverted by AMI and ours. Each column corresponds to one person. The first and second rows show the ground
truth images. The third displays the images inverted by AMI, while our inverted images are in the fourth row.

VGG16
VGGFACE

VGG16BN
VGGFACE

ResNet50
VGGFACE2

InceptionV1
VGGFACE2

InceptionV1
CASIA

SphereFace
CASIA

A
cc

ur
ac

y
(%

)

100

80

60

40

20

0

Celeba Sample Ours (black-box) Ours (white-box)

VGG16
VGGFACE

VGG16BN
VGGFACE

ResNet50
VGGFACE2

InceptionV1
VGGFACE2

InceptionV1
CASIA

SphereFace
CASIA

A
cc

ur
ac

y
(%

)

100

80

60

40

20

0

Celeba Sample Ours (black-box) Ours (white-box)

Fig. 16: Inversion effectiveness of sampling/selecting baselines
and ours. The higher, the better.

VGG16
VGGFACE

VGG16BN
VGGFACE

ResNet50
VGGFACE2

InceptionV1
VGGFACE2

InceptionV1
CASIA

SphereFace
CASIA

A
cc

ur
ac

y
(%

)

100

80

60

40

20

0

Celeba Sample Ours (black-box) Ours (white-box)

VGG16
VGGFACE

VGG16BN
VGGFACE

ResNet50
VGGFACE2

InceptionV1
VGGFACE2

InceptionV1
CASIA

SphereFace
CASIA

A
cc

ur
ac

y
(%

)

100

80

60

40

20

0

Celeba Sample Ours (black-box) Ours (white-box)

Fig. 17: Inversion generalizability of sampling/selecting base-
lines and ours. Top-1/top-5 (dark/light color) accuracy. The
higher, the better.

the commercial Microsoft Azure Cognitive Services [1]. It
provides APIs for users to embed face recognition into their
own applications without any requirements on deep learning
expertise and thus is widely used. For example, Uber utilizes
it to safeguard users against fraud by ensuring a user’s selfie
is recognized as the person on file [5]. All of our inverted
images are predicted as the target people and the top-1/top-
5 transferable accuracy is 37.50%/50.00%. Some images are
visualized in Figure 18. MIRROR is also evaluated on a model

trained on the Clarifi commercial platform [2]. The inversion
accuracy and the top-1/top-5 transferable accuracy are 100%
and 37.5%/87.5%, respectively.

5) Ablation study: In order to show how different factors
impact our approach, we conduct controlled experiments on
our approach under various settings. The factors we considered
include: 1) GAN’s training dataset; 2) the latent space to
optimize; 3) the clipping strategy; 4) GAN’s architectures;
and 5) besides the Z and W spaces, we also consider the Z+
and W+ spaces, where separate z vectors (and respectively
w vectors) are fed to different style blocks. Details of the
different factors are explained in online Appendix I [7]. From
the NIQE scores in Table VII, we can see all of them are better
than the existing state-of-the-art methods and the method with
optimization inW and clipping in P , i.e., w&clip, synthesizes
images of the best perceptual quality. Qualitative comparison
can be found in Figure 20 in Appendix I [7]. We conduct a
human study comparing the default setting, i.e., w&clip with
the StyleGAN structure trained on Celeba, with individual
other settings to understand their impact. The results are in
Table VII. As for the training data, the users prefer the images
generated by StyleGAN trained on FFHQ than those generated
by StyleGAN trained on Celeba. FFHQ has images of better
quality and more diversity so the generated faces may have
more natural skin color and better lighting conditions as shown
by Figure 21 in Appendix I [7]. However, we chose not to use
StyleGAN pre-trained on FFHQ in our major experiments,
because FFHQ has only unlabeled images which means we
cannot determine the unseen people to invert and therefore the
evaluation may be invalid. The remaining results show that the
default setting has better human preference rate.

14

TABLE VI: Feature distances of images inverted by our methods and the sampling/selecting baseline methods (the lower the
better). The two numbers for a setting correspond to the `2 feature distance on the target model and the other model pre-trained
on the same dataset.

Method
VGGFace VGGFace2 CASIA

VGG16 VGG16BN ResNet50 InceptionV1 InceptionV1 SphereFace

CelebA 105.37 81.27 83.34 106.37 160.71 178.24 159.44 171.90 153.64 14.92 27.33 174.19
Sample 96.27 77.08 77.16 100.05 170.59 200.83 173.82 183.34 153.49 18.89 26.85 174.58

MIRROR (black-box) 90.83 69.05 62.19 85.17 150.25 172.03 130.77 167.86 139.39 10.12 10.09 173.34
MIRROR (white-box) 97.73 55.41 72.06 80.65 149.96 147.97 119.82 163.84 154.41 9.81 8.96 156.19

O
ur

s
G

ro
un

d
tru

th
A

M
I

0.5853 0.57640.6629

Fig. 18: Inversion results on the commercial Microsoft Azure Cognitive service. The first row shows our inverted images, the
second row shows images inverted by AMI, and the last two rows show the ground-truth. Images inverted by AMI are blurry
and more like average faces so that they cannot be recognized by humans. Our results give better images and are more similar
to the target people.

TABLE VII: Ablation study. We invert 100 randomly selected
labels of ResNet50 using our method under various settings
and compute the average NIQE (the lower the better). We
study the human preference rate between the default setting,
i.e., w&clip with StyleGAN on Celeba and individual other
settings. For instance, the second row means that 42% prefers
results by the default setting over those by using FFHQ. Details
of different factors are explained in online Appendix I [7].

Different factors NIQE ↓ Preference ↑

Training data CelebA 3.46 –
FFHQ 4.41 42.0 ±5.7%

Latent space

z 3.77 54.8 ±1.0%
z&clip 3.87 54.8 ±2.8%

w 3.80 73.3 ±5.3%
w&clip 3.46 –

z+ 3.65 55.5 ±1.3%
z+&clip 3.75 66.0 ±9.6%

w+ 3.99 86.0 ±6.7%
w+&clip 3.57 78.4 ±7.9%

Architecture StyleGAN (FFHQ) 4.41 42.0 ±5.7%
StyleGAN2 (FFHQ) 4.78 54.4 ±0.7%

6) Effects of Dropout and Consistency based Result Se-
lection: We randomly select 50 labels of VGG16 pre-trained
on VGGFace to conduct model inversion with and without
dropout and consistency based result selection. The accuracy
and NIQE are similar. The feature distances on the subject
model and the reference model are 98.12/55.90 with the
enhancements, and 107.12/65.08 without them.

D. Results on Other Data Domains

To demonstrate the capabilities of MIRROR, we use a
StyleGAN trained on art-style face portraits [11] to invert a
ResNet50 model. The results can be found in Figure 28 in the
online Appendix [7]. They show that using data from a similar
(but different) domain can produce good inversion results. We
also show MIRROR can perform high quality inversion for
models trained on data from other domains, such as cars and
cats. Due to the limited space, the results are presented in the
online Appendix IX [7].

E. Results on Various Defensive Methods

Besides the original ResNet50 (Rorg), we attack a robust
ResNet50 (Radv) adversarially trained by [60] and a defensive
ResNet50 (Rmid) by MID [59]. MID tries to regularize the
dependency between the input image and the prediction of a
network to defend it against the inversion attack. For each of
Rorg, Radv and Rmid, we attack it and use the other two as the
reference models. The accuracy and the transferable accuracy
are both 100%. When using an InceptionV1 as the reference
model, the transferable accuracy of attacking Rorg/Radv/Rmid

is 74%/76%/73%. Adversarial training cannot make model
inversion harder as expected, because it helps model learn
robust features against adversarial perturbation. MID was able
to defend GMI well (inversion accuracy degraded from 31%
to 18% [59]) but not MIRROR (having the same 100% in-
version accuracy with and without the defense) likely because
MIRROR is a much stronger attack. Some inversion results

15

Target person Vanilla model Adv-trained model MID-trained model

Fig. 19: Inverted images on models trained with different strategies.

are shown by Figure 19. We also evaluate our method against
a VGG16 model trained by Differentially Private Stochastic
Gradient Descent (DP-SGD) [8], [70], which adds noises
to gradients during training to defend membership inference
attacks. The inversion accuracy is 100% and the top-1/top-5
transferable inversion accuracy on a normally trained VGG16
and a ResNet18 are 70%/100% and 100%/100%. While DP-
SGD can ensure certain privacy for training samples, it cannot
defend model inversion attacks. Because different from mem-
bership inference attacks where attackers check if a sample is
used to train a model, model inversion’s goal is to produce a
representative image for a target label.

VI. RELATED WORK

Machine Learning Privacy. Researchers have studied various
privacy issues in machine learning [48]. Shokri et al. [56]
proposed membership inference attacks which aim to infer
whether a given data point belongs to the training set. Such
attacks are followed up by several works [39], [66], [54], [18].
Song et al. [58] built an alternative model that performs as
accurate as the original model while memorizes information
about the training set. Following [13], Ganju et al. [24]
proposed property inference attacks that extract data properties
of the training data (e.g., the ratio of minorities). Salem et
al. [53] considered the online learning scenario and proposed
to infer the data used to update a trained model. There are
also recent works that studied information leakage problem in
collaborative learning [27], [29], [41], [68], where the training
or inference tasks are distributed to multiple participants. For
example, GradInversion [68] is a method based on DeepIn-
version to recover private training data used by clients. It
requires the gradient from a set of private training images
w.r.t the model’s weights during training which is not available
in model inversion. Also, it can only work for models with
BatchNorm layers in the white-box setting. Vec2Face [20]
focuses on recovering an image from its feature embedding. It
is not applicable when only the label information is available in
model inversion. Different from the above, our focus is on the

model inversion attack that aims to reconstruct representative
data points for target identities.

Model Inversion Attack. Fredrikson first introduced such
attack in et al. [23], [22], whose goal includes inferring the pri-
vate user attributes from a linear regression model, recovering a
person’s face image from shallow neural networks, etc. Later,
Mahendran and Vedaldi [40] put special focus on inverting
images and proposed to add natural image priors, and Wu
et al. [61] further provided formalization for model inversion
attacks. Overall, these earlier works mainly targeted at shallow
models and the inverted images do not have high fidelity.
Recently, several state-of-the-art model inversion methods have
been proposed [65], [69], [73]. For example, by querying
the target model with an auxiliary dataset, AMI [65] trains
an extra generative model to map truncated predictions to
grayscale images. DeepInversion [69] extends the optimization
framework in DeepDream [44] by incorporating an additional
regularization term to constrain feature similarities over batch
normalization layers. GMI [73] proposed to use GAN for
inversion. It optimizes over the latent space and could generate
more natural images. Following [73], Chen et al. [19] further
proposed to involve the target model into GAN. It inherits
limitations of GMI. We have done thorough comparison with
these techniques and MIRROR outperforms.

GANs and Image Inversion. Since the first GAN [25], lots of
GANs have been proposed [52], [12], [47]. Recently, a series
of improved GANs [32], [34], [35] was devised to generate
high fidelity natural images, including StyleGANs [34], [35].
StyleGANs are widely used in image super-resolution [42],
image edition [9], [10], [62], [63]. A common technique used
in these image applications is called image inversion. Different
from model inversion, image inversion aims to find the latent
vector which can precisely reconstruct a given image. It has
much stronger constraints compared to model inversion and
existing image inversion methods work only in the white-
box setting. In contrast, MIRROR takes a label and generates
images for that label and works for both white-box and black-

16

box settings. For example, [63] is a StyleGAN based image
inversion method. It adds the co-variance matrix and the mean
of the Gaussian distribution as an energy term which is actually
the Mahalanobis Distance between the latent vector and the
mean, whereas MIRROR truncates latent vectors. While its
optimization method can be adapted for mode inversion, our
experiments show our optimization outperforms [63]’s in the
context of model inversion by 25.5%. Please see details in
online Appendix V [7].

VII. CONCLUSION

We study the challenges in GAN based model inversion.
We develop a new inversion technique MIRROR based on
StyleGAN. It leverages StyleGAN’s capabilities of disentan-
gling the latent space. It supports both white-box and black-
box inversions, and regulates the image quality in an auxiliary
space of StyleGAN with a multi-variate Gaussian distribution.
Our results show that the samples inverted by MIRROR have
substantially better quality and fidelity compared to the state-
of-the-art methods.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their constructive
comments. This research was supported, in part by
NSF 1901242 and 1910300, ONR N000141712045,
N000141410468 and N000141712947, IARPA TrojAI
W911NF-19-S-0012, DARPA VSPELLS (under subcontract
1119482 with BAE Systems), and the National Natural Science
Foundation of China 62172199. Yuan Yao and Jingwei Xu are
partially supported by the Collaborative Innovation Center of
Novel Software Technology and Industrialization. We thank
Clarifai (especially Ian Kelk and Jérémy Faret) for providing
a free account to run experiments. Any opinions, findings,
and conclusions in this paper are those of the authors only
and do not necessarily reflect the views of our sponsors.

REFERENCES

[1] “Azure cognitive services,” https://azure.microsoft.com/en-us/services/
cognitive-services/.

[2] “Clarifai,” https://www.clarifai.com/.
[3] “Inception resnet (v1) models in pytorch,” https://github.com/timesler/

facenet-pytorch.
[4] “Sphereface model in pytorch,” https://github.com/clcarwin/sphereface

pytorch.
[5] “Uber with azure cognitive services,” https://customers.microsoft.com/

en-us/story/731196-uber.
[6] “Vggface/vggface2 models in pytorch,” https://www.robots.ox.ac.uk/

∼albanie/pytorch-models.html.
[7] “Our system MIRROR,” https://model-inversion.github.io/mirror/,

2021.
[8] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov,

K. Talwar, and L. Zhang, “Deep learning with differential privacy,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (CCS), ser. CCS ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 308–318.

[9] R. Abdal, Y. Qin, and P. Wonka, “Image2stylegan: How to embed
images into the stylegan latent space?” in Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), 2019, pp. 4432–
4441.

[10] R. Abdal, Y. Qin, and P. Wonka, “Image2stylegan++: How to edit the
embedded images?” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2020, pp. 8296–
8305.

[11] ak9250, “Stylegan art,” https://github.com/ak9250/stylegan-art, 2019.

[12] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” 2017.

[13] G. Ateniese, L. V. Mancini, A. Spognardi, A. Villani, D. Vitali, and
G. Felici, “Hacking smart machines with smarter ones: How to extract
meaningful data from machine learning classifiers,” International Jour-
nal of Security and Networks, vol. 10, no. 3, pp. 137–150, 2015.

[14] I. Bárány and V. Vu, “Central limit theorems for gaussian polytopes,”
The Annals of Probability, vol. 35, no. 4, pp. 1593–1621, 2007.

[15] D. Bhandari, C. Murthy, and S. K. Pal, “Genetic algorithm with elitist
model and its convergence,” International journal of pattern recognition
and artificial intelligence, vol. 10, no. 06, pp. 731–747, 1996.

[16] C. M. Bishop, Pattern recognition and machine learning. springer,
2006.

[17] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman, “Vggface2:
A dataset for recognising faces across pose and age,” in 2018 13th IEEE
international conference on automatic face & gesture recognition (FG).
IEEE, 2018, pp. 67–74.

[18] D. Chen, N. Yu, Y. Zhang, and M. Fritz, “Gan-leaks: A taxonomy of
membership inference attacks against generative models,” in Proceed-
ings of the ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS), 2020, pp. 343–362.

[19] S. Chen, R. Jia, and G.-J. Qi, “Improved techniques for model inversion
attack,” arXiv preprint arXiv:2010.04092, 2020.

[20] C. N. Duong, T.-D. Truong, K. Luu, K. G. Quach, H. Bui, and K. Roy,
“Vec2face: Unveil human faces from their blackbox features in face
recognition,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2020, pp. 6132–6141.

[21] G. Franchi, A. Bursuc, E. Aldea, S. Dubuisson, and I. Bloch, “Tradi:
Tracking deep neural network weight distributions,” in Proceedings of
the European Conference on Computer Vision (ECCV). Springer, 2020,
pp. 105–121.

[22] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks
that exploit confidence information and basic countermeasures,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2015, pp. 1322–1333.

[23] M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and T. Ristenpart,
“Privacy in pharmacogenetics: An end-to-end case study of personalized
warfarin dosing,” in 23rd {USENIX} Security Symposium ({USENIX}
Security), 2014, pp. 17–32.

[24] K. Ganju, Q. Wang, W. Yang, C. A. Gunter, and N. Borisov, “Property
inference attacks on fully connected neural networks using permutation
invariant representations,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2018,
pp. 619–633.

[25] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. C. Courville, and Y. Bengio, “Generative adversarial nets,”
in Advances in Neural Information Processing Systems (NeurIPS), 2014.

[26] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.

[27] Z. He, T. Zhang, and R. B. Lee, “Model inversion attacks against
collaborative inference,” in Proceedings of the 35th Annual Computer
Security Applications Conference (ACSAC), 2019, pp. 148–162.

[28] S. Hidano, T. Murakami, S. Katsumata, S. Kiyomoto, and G. Hanaoka,
“Model inversion attacks for prediction systems: Without knowledge of
non-sensitive attributes,” in 2017 15th Annual Conference on Privacy,
Security and Trust (PST). IEEE, 2017, pp. 115–124.

[29] B. Hitaj, G. Ateniese, and F. Perez-Cruz, “Deep models under the gan:
information leakage from collaborative deep learning,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS), 2017, pp. 603–618.

[30] X. Huang and S. Belongie, “Arbitrary style transfer in real-time with
adaptive instance normalization,” in Proceedings of the IEEE Interna-
tional Conference on Computer Vision (ICCV), 2017, pp. 1501–1510.

[31] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in International
Conference on Machine Learning (ICML). PMLR, 2015, pp. 448–456.

[32] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing

17

https://azure.microsoft.com/en-us/services/cognitive-services/
https://azure.microsoft.com/en-us/services/cognitive-services/
https://www.clarifai.com/
https://github.com/timesler/facenet-pytorch
https://github.com/timesler/facenet-pytorch
https://github.com/clcarwin/sphereface_pytorch
https://github.com/clcarwin/sphereface_pytorch
https://customers.microsoft.com/en-us/story/731196-uber
https://customers.microsoft.com/en-us/story/731196-uber
https://www.robots.ox.ac.uk/~albanie/pytorch-models.html
https://www.robots.ox.ac.uk/~albanie/pytorch-models.html
https://model-inversion.github.io/mirror/
https://github.com/ak9250/stylegan-art

of gans for improved quality, stability, and variation,” in International
Conference on Learning Representations (ICLR), 2018.

[33] T. Karras, S. Laine, and T. Aila, “Nvidia stylegan,” https://github.com/
NVlabs/stylegan, 2019.

[34] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture
for generative adversarial networks,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2019,
pp. 4401–4410.

[35] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila,
“Analyzing and improving the image quality of stylegan,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2020, pp. 8110–8119.

[36] J. Krause, M. Stark, J. Deng, and L. Fei-Fei, “3d object representations
for fine-grained categorization,” in 4th International IEEE Workshop
on 3D Representation and Recognition (3dRR-13), Sydney, Australia,
2013.

[37] S. Li, J. Li, H. Tang, R. Qian, and W. Lin, “Atrw: A benchmark for
amur tiger re-identification in the wild,” in Proceedings of the 28th ACM
International Conference on Multimedia (MM), 2020, pp. 2590–2598.

[38] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes
in the wild,” in Proceedings of International Conference on Computer
Vision (ICCV), December 2015.

[39] Y. Long, V. Bindschaedler, L. Wang, D. Bu, X. Wang, H. Tang, C. A.
Gunter, and K. Chen, “Understanding membership inferences on well-
generalized learning models,” arXiv preprint arXiv:1802.04889, 2018.

[40] A. Mahendran and A. Vedaldi, “Understanding deep image represen-
tations by inverting them,” in Proceedings of the IEEE conference on
computer vision and pattern recognition (CVPR), 2015, pp. 5188–5196.

[41] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Exploiting
unintended feature leakage in collaborative learning,” in 2019 IEEE
Symposium on Security and Privacy (SP). IEEE, 2019, pp. 691–706.

[42] S. Menon, A. Damian, S. Hu, N. Ravi, and C. Rudin, “Pulse: Self-
supervised photo upsampling via latent space exploration of generative
models,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2020, pp. 2437–2445.

[43] A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a “completely
blind” image quality analyzer,” IEEE Signal Processing Letters, vol. 20,
no. 3, pp. 209–212, 2012.

[44] A. Mordvintsev, C. Olah, and M. Tyka, “Inceptionism: Going deeper
into neural networks,” 2015.

[45] NIST/SEMATECH, “e-handbook of statistical methods,” https://www.
itl.nist.gov/div898/handbook/eda/section3/qqplot.htm, 2012.

[46] NVIDIA, “Resnet50 v1.5 for pytorch,” https://github.com/NVIDIA/
DeepLearningExamples/tree/master/PyTorch/Classification/ConvNets/
resnet50v1.5.

[47] A. Odena, C. Olah, and J. Shlens, “Conditional image synthesis with
auxiliary classifier gans,” in International Conference on Machine
Learning (ICML). PMLR, 2017, pp. 2642–2651.

[48] N. Papernot, P. McDaniel, A. Sinha, and M. P. Wellman, “Sok: Security
and privacy in machine learning,” in 2018 IEEE European Symposium
on Security and Privacy (EuroS&P). IEEE, 2018, pp. 399–414.

[49] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition,”
2015.

[50] O. M. Parkhi, A. Vedaldi, A. Zisserman, and C. V. Jawahar, “Cats
and dogs,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2012.

[51] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32 (NeurIPS). Curran Associates, Inc., 2019, pp.
8024–8035.

[52] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,”
2015.

[53] A. Salem, A. Bhattacharya, M. Backes, M. Fritz, and Y. Zhang,
“Updates-leak: Data set inference and reconstruction attacks in online

learning,” in 29th {USENIX} Security Symposium ({USENIX} Secu-
rity), 2020, pp. 1291–1308.

[54] A. Salem, Y. Zhang, M. Humbert, M. Fritz, and M. Backes, “Ml-leaks:
Model and data independent membership inference attacks and defenses
on machine learning models,” in Network and Distributed Systems
Security Symposium (NDSS). Internet Society, 2019.

[55] Y. Shen, Y. Xu, C. Yang, J. Zhu, and B. Zhou, “Genforce,” https://
github.com/genforce/genforce, 2020.

[56] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in 2017 IEEE
Symposium on Security and Privacy (SP). IEEE, 2017, pp. 3–18.

[57] J. Sirignano and K. Spiliopoulos, “Mean field analysis of neural
networks: A central limit theorem,” Stochastic Processes and their
Applications, vol. 130, no. 3, pp. 1820–1852, 2020.

[58] C. Song, T. Ristenpart, and V. Shmatikov, “Machine learning models
that remember too much,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2017,
pp. 587–601.

[59] T. Wang, Y. Zhang, and R. Jia, “Improving robustness to model
inversion attacks via mutual information regularization,” in Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI), vol. 35, no. 13,
2021, pp. 11 666–11 673.

[60] E. Wong, L. Rice, and J. Z. Kolter, “Fast is better than free: Revisiting
adversarial training,” in International Conference on Learning Repre-
sentations (ICLR), 2020.

[61] X. Wu, M. Fredrikson, S. Jha, and J. F. Naughton, “A methodology for
formalizing model-inversion attacks,” in IEEE 29th Computer Security
Foundations Symposium (CSF). IEEE, 2016, pp. 355–370.

[62] Z. Wu, D. Lischinski, and E. Shechtman, “Stylespace analysis: Disen-
tangled controls for stylegan image generation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2021, pp. 12 863–12 872.

[63] J. Wulff and A. Torralba, “Improving inversion and generation di-
versity in stylegan using a gaussianized latent space,” arXiv preprint
arXiv:2009.06529, 2020.

[64] Q. Xu, G. Tao, and X. Zhang, “D-square-b: Deep distribution bound
for natural-looking adversarial attack,” 2020.

[65] Z. Yang, J. Zhang, E.-C. Chang, and Z. Liang, “Neural network
inversion in adversarial setting via background knowledge alignment,”
in Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2019, pp. 225–240.

[66] S. Yeom, I. Giacomelli, M. Fredrikson, and S. Jha, “Privacy risk in
machine learning: Analyzing the connection to overfitting,” in 2018
IEEE 31st Computer Security Foundations Symposium (CSF). IEEE,
2018, pp. 268–282.

[67] D. Yi, Z. Lei, S. Liao, and S. Z. Li, “Learning face representation from
scratch,” arXiv preprint arXiv:1411.7923, 2014.

[68] H. Yin, A. Mallya, A. Vahdat, J. M. Alvarez, J. Kautz, and
P. Molchanov, “See through gradients: Image batch recovery via grad-
inversion,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2021, pp. 16 337–16 346.

[69] H. Yin, P. Molchanov, J. M. Alvarez, Z. Li, A. Mallya, D. Hoiem, N. K.
Jha, and J. Kautz, “Dreaming to distill: Data-free knowledge transfer
via deepinversion,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2020, pp. 8715–
8724.

[70] A. Yousefpour, I. Shilov, A. Sablayrolles, D. Testuggine, K. Prasad,
M. Malek, J. Nguyen, S. Ghosh, A. Bharadwaj, J. Zhao, G. Cormode,
and I. Mironov, “Opacus: User-friendly differential privacy library in
pytorch,” arXiv preprint arXiv:2109.12298, 2021.

[71] F. Yu, Y. Zhang, S. Song, A. Seff, and J. Xiao, “Lsun: Construction
of a large-scale image dataset using deep learning with humans in the
loop,” arXiv preprint arXiv:1506.03365, 2015.

[72] R. Zhang, P. Isola, and A. A. Efros, “Colorful image colorization,” in
European Conference on Computer Vision. Springer, 2016, pp. 649–
666.

[73] Y. Zhang, R. Jia, H. Pei, W. Wang, B. Li, and D. Song, “The
secret revealer: Generative model-inversion attacks against deep neural
networks,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2020, pp. 253–261.

18

https://github.com/NVlabs/stylegan
https://github.com/NVlabs/stylegan
https://www.itl.nist.gov/div898/handbook/eda/section3/qqplot.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/qqplot.htm
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Classification/ConvNets/resnet50v1.5
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Classification/ConvNets/resnet50v1.5
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Classification/ConvNets/resnet50v1.5
https://github.com/genforce/genforce
https://github.com/genforce/genforce

APPENDIX

I. OTHER DESIGN CHOICES OF STYLEGAN BASED
WHITE-BOX INVERSION

A. Different Latent Spaces and Clipping Strategies

Besides the Z , W , and P spaces we have described, there
are other spaces that can be leveraged for white-box inversion.
Specifically, while the vanilla StyleGAN uses a z value (and in
turn a w value) to describe the styles for all the style blocks,
we can use separate z values (and in turn separate w values) for
individual style blocks. The resulting spaces are hence called
the Z+ andW+ spaces, respectively. The other design choices
hence include performing optimizations in these two spaces.

W+ space has been explored by a number of image em-
bedding and feature editing approaches [9], [10]. The former
aims to find a latent value whose corresponding generated
sample is as close to a given sample as possible. The latter
is to support easy semantic transformations on a given image
such as changing nose shape. It is built on the former. That is,
semantic transformations can be achieved by changing indi-
vidual styles of the embedded latent value of the given image.
Existing works show thatW+ space allows high quality image
embedding and feature editing. However, we find W+ space
is not a good option for model inversion (see Figure 20).
In particular, the optimization in W+ can easily reach very
low loss values while the generated samples are unnatural.
Our further inspection discloses that the image embedding
and feature editing problems have very strong constraints.
They make optimization in the over-parameterized W+ space

feasible. For example, image embedding is constrained by a
reference image. In contrast, model inversion relies on cross-
entropy loss, which is under-constrained, evidenced by its
vulnerability to adversarial sample attacks.

Another hypothesis is that since the latent values for
individual style blocks are independent, the Z+ space may
not be entangled and hence amenable to model inversion.
However, our experiment shows that Z+ is not good either
(see Figure 20). We speculate that although the z values
for different style blocks are separated, they are nonetheless
entangled.

When clipping is applied in the Z-related spaces (i.e.,
z&clip and z+&clip), we clip each dimension into µ±σ where
µ = 0 and σ = 1 because it’s sampled from the standard
normal distribution. When clipping occurs in the W-related
spaces (i.e., w&clip and w+&clip), we clip each dimension in
the P space.

B. Different Architectures and Training Datasets

Figure 21 shows inversion results of different architec-
tures (StyleGAN and StyleGAN2) trained on different datasets
(CelebA256 and FFHQ). Although StyleGANs traind on
FFHQ of higher diversity and better quality generates faces
with more natural skin color and better lighting conditions,
we decided not to use them in our major experiments because
FFHQ doesn’t label the identities which means we cannot
determine the unseen people to invert and it may impair the
validity of our experiments.

 space𝒵 space & clip𝒵 space𝒲 space & clip𝒲 space𝒵+ space & clip𝒵+ space𝒲+ space & clip𝒲+ Target person

Fig. 20: Qualitative analysis of inversions in different latent spaces and with clipping or not. The Z space is more entangled
than the W space and thus more difficult for inversion [34], [35]. The W+ space is more flexible and capable than W in that
arbitrary images can be embedded into W+ [10], but needs more constraints.

19

Target personStyleGAN2

FFHQ

StyleGAN

FFHQ

StyleGAN

CelebA

Fig. 21: Qualitative analysis of inversions with different GAN architectures and training datasets.

TABLE VIII: Minutes used to conduct our white-box/black-box inversion.

Method
VGGFace VGGFace2 CASIA

VGG16 VGG16BN ResNet50 InceptionV1 InceptionV1 SphereFace

MIRROR (white-box) 8.34 7.09 9.58 12.97 12.53 6.85
MIRROR (black-box) 4.37 6.48 8.44 9.13 9.11 4.98

20

II. TIME COST AND QUERIES

Table VIII shows the average time cost for our white-
box/black-box inversion methods for different models. For our
white-box inversion method, we invert 100 labels of each
model separately with a batch size of 8. That is, for each target
label, we invert 8 images. Thus the time cost to generate an
image for a target label is computed by dividing the total time
cost by 8. For our black-box inversion method, the time cost
corresponds to inverting 1 label.

The white-box methods (ours and baselines) need 20k
queries. In the black-box settings, AMI needs 104K queries to
train the inversion network, and one query to test the inverted
result during the attack. MIRROR doesn’t require training. It
needs less than 100K queries during the genetic search. When
evaluating on the commercial Azure service, we use about 2k
queries and no abnormal behavior was detected.

III. HUMAN STUDY

A. Relative Comparison

Figure 22 shows an example of our human study on
relatively comparing different methods. This is one question
for comparing the W&clip setting with the W+&clip setting.

B. Absolute Performance

Figure 23 shows an example of our human study on abso-
lute performance of MIRROR. We use MIRROR to generate
an inverted image for a target label. We also select five real
images from the original training set with one from the target
label and the others from random labels. We then ask users
to choose one that is the person in the inverted image. The
average accuracy is 95.71% (standard error is 1.70%) collected
from 9 users on 20 questions.

We further evaluate our method in an extreme case. Instead
of selecting images from random labels like [22], we select
other images from identities similar to the target identity.
While finding others that look like the target persons could be
subjective, we select similar individuals from the perspective
of the target model. Assume the target model is M and the
label of interest is t. We go through t’s training data Dt and
note down the top-5 labels of each image predicted by M .
We count the frequency of each label occurring among the
top-5 and we select the 4 most popular labels different from t
and pick one image for each label as well as an image of
t. From those 5 images, we ask users to select the target
person given the inverted image. Figure 24 shows an example
question. The average accuracy is 89.29% (standard error is
2.97%) collected from 9 users on 20 questions. The decrease of
the accuracy is expected as those people indeed look like each
other. Nonetheless, from the results of relative comparison, our
method still outperforms existing methods significantly.

Similar to the above experiments, but we make it more
challenging. For each target person, we go through the CelebA
dataset and select 4 images misclassified to the target person
by the subject model. Figure 25 shows an example question.
The average accuracy is 78.75% (standard error is 7.74%). The
decrease is expected because this user study is much more
difficult.

IV. USER STUDY VIA AMAZON MECHANICAL TURK

The volunteers are from Amazon Mechanical Turk
(MTurk). We require the participants to have over 90% sat-
isfiability over past surveys. The participants are randomly
assigned by Mturk. Based on Mturk’s platform statistics, 57%
participants are female, 68% participants are under 40 ages,
80% workers are white. We pay $0.5 for each test.

V. COMPARISON WITH LOSS-BASED REGULARIZATION IN
W SPACE

We replace the optimization method in MIRROR with
[63]’s and conduct the comparison. We use ResNet50 as the
subject model and 100 labels for inversion. MIRROR largely
outperforms [63] with the top-1 accuracy of 81.5% vs. 56%,
and the top-5 accuracy of 90% vs. 76.88%. Also, our inverted
images have a smaller NIQE score (3.46 vs. 3.66). Complete
results are in Table IX.

TABLE IX: Comparison between our truncation regularization
and [63]’s distance loss.

Metrics [63] MIRROR

Accuracy (%) ↑ 100 ±0 100 ±0
Ref. Top-1 Acc. (%) ↑ 56.00 ±3.67 81.50 ±2.60
Ref. Top-5 Acc. (%) ↑ 76.88 ±3.18 90.00 ±1.80

`2 dist. ↓ 143.08 ±1.42 149.96 ±0.76
Ref. `2 dist. ↓ 165.22 ±1.87 147.97 ±2.5

NIQE ↓ 3.66 3.46

VI. RANDOM DROPOUT IMPLEMENTATION

We use VGG16 as an example to illustrate our implemen-
tation of random dropout strategy in the white-box setting.
The procedure to modify the original M is shown in Algo-
rithm 3. For other networks, different modification may be
required. The dropout layer with probability p is created by
using the PyTorch class nn.Dropout(p) for fully connected
layers or nn.Dropout2d(p) for pooling/convolutional layers.
For each neuron, the dropout operation independently conducts
a Bernoulli trial and sets its value to 0 with probability p.

Algorithm 3 Random dropout example on VGG16
1: function DROPOUT(model M)
2: Randomly select a subset P of M ’s pooling layers;
3: Randomly select a subset F of M ’s fully connected layers;
4: Select dropout probability p according to |P | and |F |;
5: . The larger the set size is, the smaller p should be.
6: Append the dropout layer with p to each selected layer;
7: . Changing source code or using forward hooks.
8: return modified M
9: end function

VII. INEFFECTIVE REGULARIZATION IN Z SPACE

Figure 26 shows the images inverted using PGGAN with
different strategies of regularizing latent vectors. For each
inverted image, we accompany it with the histogram of its
latent vector. The first block denotes no regularization. The
second to fourth blocks denote the inversion results where
we truncate the latent vectors to different ranges. The fifth to
seventh blocks correspond to the latent loss strategies where
we use 1/10/100x loss to pull the mean and variance of the
latent vector to 0 and 1, respectively. The last column shows
the images of the target people.

21

Which person looks like the target person on the top?

Step 1

Which person looks like the target person on the top?

Step 2 Target image

Left image Right image

You think the left one is more similar.

Step 3

Fig. 22: An example of human study. In Step 1, each worker can observe the images for five seconds. After the time elapsed,
the worker are required to select a look-alike. Step 3 only appears in the warm-up, where users are reaffirmed their choices.

Fig. 23: An example of human study for evaluating absolute performance. Users are given one inverted image as the reference
image, one image from the target identity and four random images (each image from a random identity). We ask users to select
the same person. The second image from the left is the target person.

VIII. DISCRIMINATIVE LOSS FAILS TO ENFORCE
NATURALNESS

Figure 27 shows the images inverted by GMI with and
without the discriminative loss denoted by the odd and even
rows respectively. The original GMI method tries to promote
the naturalness of images using the discriminative loss. How-
ever, it could not achieve the goal qualitatively (Figure 27) or
quantitatively (Table X).

IX. INVERSION MODELS IN OTHER DATA DOMAINS

Figure 28 shows the inversion results of MIRROR with a
StyleGAN pre-trained with art portraits [11] for a ResNet50
model pre-trained on VGGFACE2 dataset. It’s interesting that
they actually look like the art portraits of the corresponding
target persons.

Figure 29 shows the inversion results of MIRROR with a
StyleGAN pre-trained with LSUN Cats [71] for a ResNet18
model trained on 12 different breeds of cats and 2 types of
tigers. We can see most target cats are faithfully inverted with
details such as face patterns, fur colors/patterns, and even eye
colors. For the inverted tigers, although the fur colors and
patterns resemble tigers’, they still look like cats to some
extent. It seems that the cat features learned by the StyleGAN
cannot generalize to tigers’.

Figure 30 shows the inversion results of MIRROR with a
StyleGAN pre-trained with LSUN Cars [71] for a ResNet34

model trained on 196 different cars. Observe the inverted car
types (e.g., sedans, hatchbacks, and sports cars), colors, and
shapes are largely correct. In some cases such as the two
models in the last row, their front features such as headlights,
hoods, grilles and bumpers are precisely inverted. In some
other cases, details may be missing such as the bumpers of
the Hammer.

X. MORE INVERSION RESULTS INW SPACE WITHOUT
CLIPPING

Figure 31 shows more inversion results inW space without
clipping or with simple clipping. The unnatural results neces-
sitate better regularization.

XI. DEEPINVESION WITH DIFFERENT CONSTRAINTS

Figure 32 shows results of DeepInversion with different
starting constraints and parameters. The original DeepInversion
starts from random noises and uses 1 as the coefficient of its
BN loss. We tried to turn down the weights for the variance
item in the BN loss. We find that 0.01x variance loss gives
more stable features compared to 1x. However, there are
multiple overlapping faces and misplaced eyes in the inverted
images. Therefore, we propose to add more constraints to
encourage the natural combination of the inverted features
by providing better starting points such as average faces
and cartoon faces. Observe that they indeed help promote
the naturalness. However, they are still not comparable to
generator-based methods.

22

Fig. 24: An example of human study for evaluating absolute performance. Users are given one inverted image as the reference
image, one image from the target identity and four images (each image from four most similar identities). We ask users to select
the same person. The rightmost image is the target person.

Fig. 25: An example of human study for evaluating absolute performance. Users are given one inverted image as the reference
image, one image from the target identity and four images from CelebA misclassified to the target person. We ask users to select
the same person. The second image from the left is the target person.

TABLE X: Quantitative comparison between GMI with and without the discriminative loss.

Metric Method
VGGFace VGGFace2 CASIA

VGG16 VGG16BN ResNet50 InceptionV1 InceptionV1 SphereFace

Effectiveness↑ GMI 95.87 96.00 99.88 100.00 97.25 90.12
GMI+discri. 96.00 96.00 100.00 99.88 96.63 88.50

Generalizability↑ GMI 40.37 59.62 44.87 64.50 33.50 52.00 17.75 28.00 9.75 18.50 6.12 9.50
GMI+discri. 35.00 56.75 45.25 64.38 30.00 49.63 17.13 28.88 8.62 18.75 5.75 9.00

Feature Distance↓ GMI 111.99 102.60 98.37 104.90 154.59 196.26 143.21 188.23 153.43 7.65 8.66 187.64
GMI+discri. 110.20 103.41 98.87 104.49 155.25 198.51 143.47 188.23 153.34 7.62 8.53 187.73

NIQE↓ GMI 6.82 6.78 6.94 6.57 6.76 6.59
GMI+discri. 6.72 6.65 6.89 6.56 6.73 6.51

23

Target personloss: , 1 × μ → 0 σ → 1clip to 0 ± 1no strategy clip to 0 ± 0.5 clip to 0 ± 0.25 loss: , 10 × μ → 0 σ → 1 loss: , 100 × μ → 0 σ → 1

Fig. 26: Optimizing latent vectors in PGGAN with different regularization strategies.

TargetImages inverted by GMI

+discri.

+discri.

+discri.

+discri.

+discri.

Fig. 27: Images inverted by GMI with and without the discriminative loss.

24

Target personInversion results

Fig. 28: Inverting ResNet50 pre-trained on VGGFACE2 using StyleGAN pre-trained on art faces.

25

TargetInversion results

Fig. 29: Inverting ResNet18 pre-trained on the Oxford-IIIT Pet Dataset with additional Amur tigers and white tigers using
StyleGAN pre-trained on LSUN cat dataset.

26

Target carInverted results Target carInverted results

Fig. 30: Inverting ResNet34 pre-trained on the Stanford Cars Dataset using StyleGAN pre-trained on LSUN car dataset.

Fig. 31: Images inverted in W space without clipping (odd rows) and with simple clipping (even rows).

27

Start from

average faces

Start from

cartoon faces

Start from

random noises

1 var0.01 var0 var 1 var0.01 var0 var 1 var0.01 var0 var

Target Person

Fig. 32: DeepInversion with various settings.

28

	Introduction
	Background: StyleGANs
	Motivation
	Existing White-box Inversion Methods
	Existing Black-box Inversion Methods
	Our Solution

	design
	Observations in Using GANs for Model Inversion
	Optimization in the Z Space is Ineffective
	Pre-trained Discriminator Cannot Enforce Naturalness

	White-box Inversion in MIRROR
	Black-box Inversion

	Evaluation
	Experimental Setup
	Datasets and Models
	StyleGANs
	Non-overlapping Inversion
	Baselines

	Evaluation Metrics
	Inverting Face Recognition Models
	White-box Inversion Results
	Black-box Inversion Results
	Comparison with Choosing Samples with Highest Target Confidence
	Commercial Service Inversion Results
	Ablation study
	Effects of Dropout and Consistency based Result Selection

	Results on Other Data Domains
	Results on Various Defensive Methods

	Related Work
	Conclusion
	References
	Other Design Choices of StyleGAN based White-box Inversion
	Different Latent Spacesblack and Clipping Strategies
	Different Architectures and Training Datasets

	Time Costblack and Queries
	Human Study
	Relative Comparison
	Absolute Performance

	User Study via Amazon Mechanical Turk
	Comparison with Loss-based Regularization in W space
	Random Dropout Implementation
	Ineffective Regularization in Z Space
	Discriminative Loss Fails to Enforce Naturalness
	Inversion Models in Other Data Domains
	More Inversion Results in W Space without Clipping
	Deepinvesion with Different Constraints

