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Abstract

Large language models (LLMs) are widely used in software de-
velopment. However, the code generated by LLMs often contains
vulnerabilities. Several secure code generation methods have been
proposed to address this issue, but their current evaluation schemes
leave several concerns unaddressed. Specifically, most existing stud-
ies evaluate security and functional correctness separately, using
different datasets. That is, they assess vulnerabilities using security-
related code datasets while validating functionality with general
code datasets. In addition, prior research primarily relies on a single
static analyzer, CodeQL, to detect vulnerabilities in generated code,
which limits the scope of security evaluation.

In this work, we conduct a comprehensive study to systemati-
cally assess the improvements introduced by four state-of-the-art
secure code generation techniques. Specifically, we apply both secu-
rity inspection and functionality validation to the same generated
code and evaluate these two aspects together. We also employ three
popular static analyzers and two LLMs to identify potential vul-
nerabilities in the generated code. Our study reveals that existing
techniques often compromise the functionality of generated code
to enhance security. Their overall performance remains limited
when evaluating security and functionality together. In fact, many
techniques even degrade the performance of the base LLM by more
than 50%. Our further inspection reveals that these techniques of-
ten either remove vulnerable lines of code entirely or generate
“garbage code” that is unrelated to the intended task. Moreover,
the commonly used static analyzer CodeQL fails to detect several
vulnerabilities, further obscuring the actual security improvements
achieved by existing techniques. Our study serves as a guideline
for a more rigorous and comprehensive evaluation of secure code
generation performance in future work.
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1 Introduction

Software development is a time-consuming and repetitive task.
The rapid evolution of large language models (LLMs) has greatly
benefited software developers. Given task requirements described in
natural language, LLMs can generate functional and easy-to-adopt
code snippets, significantly accelerating the software development
process. Many LLM-based code assistants are already integrated
into IDEs, such as Copilot [2] and Cursor [3].

However, just like human developers, LLMs can also make mis-
takes when producing code. One of the major concerns regarding
LLM-generated code is its security. As code snippets generated by
LLMs are increasingly incorporated into industrial-level software
and systems, it is critical to ensure that LLM-generated code is free
of vulnerabilities that could be exploited by attackers.

To address this, a number of techniques have been proposed
to improve the security of LLM-generated code, called secure code
generation methods. These techniques typically involve either ad-
justing LLM weight parameters or manipulating the input to or
output from the LLM. For example, SVEN [23] and SafeCoder [24]
construct a training dataset containing code snippets with and
without vulnerabilities. They use such a dataset to fine-tune the
model such that it can generate vulnerability-free code once trained.
CodeGuard+ [21] instead controls the generation process of LLM
inference. As LLMs use a decoding algorithm to determine the out-
put, CodeGuard+ modifies this algorithm to favor outputs that lead
to secure code. Another state-of-the-art technique, PromSec [41],
iteratively refines the task prompt based on the feedback from a
vulnerability scanner on the generated code.

The evaluation for these secure code generation techniques typi-
cally considers whether the generated code contains vulnerabilities.
A common practice is to use a vulnerability scanner, such as Cod-
eQL [7], to assess the security. These techniques also measure their
impact on normal model utility, that is, whether the enhanced LLM
can still generate functional and usable code. A code benchmark
like HumanEval [15] is usually adopted for the evaluation.

While the current evaluation schemes make sense, there are
a few problems. First, existing works mainly rely on the reported
results by a single vulnerability detector, CodeQL, for assessing secu-
rity, following the security evaluation practice proposed in prior
work [45]. This scanner is not the gold standard as it can miss or
misflag certain vulnerabilities. Our experiments in Section 4.1 show
that CodeQL can miss more than 20% vulnerabilities in generated
code. Second, the current evaluation scheme examines the security
and functional correctness of generated code independently. In other
words, it uses a security-related code dataset to measure the se-
curity (e.g., [53]) and use another general code dataset to assess
functionality (e.g., [44]). Such an evaluation scheme leaves a gap
of reported results between the two aspects. Are the generated code
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from the functionality dataset secure? Are the generated code from
the security dataset functionally correct?

A straightforward idea is to use one of those datasets to evaluate
both security and functional correctness on the LLM-generated
code. However, there are a few issues with the datasets employed
in previous works. Most security-related code datasets do not have
unit tests [13, 53, 56], meaning it is not feasible to rigorously eval-
uate the functionality of the generated code. The functionality
benchmarks, such as HumanEval [15] and MBPP [12], on the other
hand, contain relatively simple tasks. They do not have the com-
plexity of triggering security issues in the generated code, resulting
in nearly 100% security rate [53].

A few works craft new benchmarks for evaluating the security
and functionality of LLM-generated code together, such as Code-
Guard+ [21] and CWEval [47]. While promising, their sample size
is at a small scale, with CodeGuard+ and CWEval containing only
91 and 119 tasks, respectively, which limits a comprehensive and
in-depth analysis. In addition, these works focus on either con-
structing the benchmark for mainstream LLMs or assessing the
performance of a specific technique (e.g., SVEN [23]). They do
not aim to comprehensively evaluate many existing secure code
generation techniques.

In this work, we conduct a comprehensive study on the perfor-
mance of existing secure code generation techniques when consid-
ering security and functionality simultaneously. Our goal is to
understand not only their overall performance but also what con-
tributes to the improvement or reduction of the two aspects. We
focus on function-level code generation, a commonly adopted sce-
nario in LLM-aided development. To achieve this, we leverage two
large datasets on code generation tasks: BigCodeBench [70] and
SecCodePLT [62], each containing more than 1,000 tasks. This al-
lows for a more comprehensive assessment of existing techniques
at a large scale. In addition, to avoid relying on a single vulnera-
bility scanner, we incorporate three static analyzers: CodeQL [7],
Bearer [17], and Bandit [48], for evaluating the security of LLM-
generated code. We also consider two LLMs: Llama3.3-70B [22] and
Qwen2.5-72B [61], for zero-shot vulnerability detection, as LLMs
have shown promise in assessing code security [32, 33, 55, 68].

Our study reveals that while existing secure code generation
techniques improve the security of LLM-generated code to some
extent, they often come at the cost of sacrificing functional correct-
ness. A deeper analysis shows that these techniques may simply
remove insecure lines of code or produce “garbage code” that is
irrelevant to the intended task. However, such problems cannot
be discovered with the current evaluation scheme, as the security
and functionality scores are reported based on separate evaluations.
Furthermore, our study demonstrates that vulnerability scanners
have different strengths in detecting certain types of vulnerabilities.
No single scanner can cover all potential security issues. Therefore,
it is critical to employ more scanners in security evaluations or use
other advanced security assessment methods. The contributions of
this work are summarized below:

e We introduce a new metric, SAFE, that considers both the
security and functionality of LLM-generated code to evalu-
ate state-of-the-art secure code generation techniques and
identify gaps in the current evaluation schemes.
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# Instruction: Runs the provided backup shell script and logs the start
time, end time, and exit status in a specified JSON log file

1 import subprocess

2 import os

3 import json

4 from datetime import datetime

5 def task_func(script_name, log_file):
6

7 > if not os.path.isfile(script_name):

14 try:

15 result = subprocess.run(['bash', script_name])
16 exit_status = result.returncode

17 except subprocess.CalledProcessError as e:

18 exit_status = e.returncode

19 result = e

22 end_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S')

26> log_entry = e
gfn Overlooked By CodeQL

50 return log_entry

Figure 1: An example where CodeQL overlooks a vulner-
ability in the generated code. Line 15 contains a CWE-78
vulnerability that CodeQL fails to identify.

e We construct an enhanced dataset SecCodePLT+ with unit
tests, providing a benchmark for secure code evaluation.

e We investigate the performance disparity in functionality
and security of existing techniques and classify causes of
functionality reduction into five categories.

e We highlight the limited performance improvement of exist-
ing techniques under our evaluation framework and call for
new approaches to secure code generation.

2 Background and Motivation

2.1 Secure Code Generation and Evaluation

Code generation aims to obtain a code snippet from an LLM through
a prompt describing the desired task. Yet, the generated code can
carry vulnerabilities. To enhance security, several techniques have
been proposed to guide LLMs in generating code that not only
accomplishes its intended tasks but also remains free of vulnera-
bilities [21, 23, 24, 41, 65]. These techniques commonly fine-tune
the model, modify the input prompt, or manipulate the generation
process, for which more details are discussed in Section 3.2.

Secure code generation needs to be evaluated from two aspects,
functionality and security. Functionality measures whether the gen-
erated code adheres to the task requirements, while security in-
spects the existence of vulnerabilities in the generated code. Most
existing works evaluate the two aspects independently. That is, they
use one dataset to evaluate functionality (e.g., [44]) and another
dataset to assess security (e.g., [53]). The results are then combined
to represent the technique’s performance. The functionality dataset
usually comes with unit tests, which can be applied directly for
evaluation. Yet, the security dataset offers no such measurements.
Moreover, the existing works use external vulnerability scanners
like CodeQL [7] to detect if the generated code has vulnerabilities.

An intuitive question researchers often have is why the existing
works do not directly measure the security of the code generated for the
functionality dataset [21, 47]. The common reason is that tasks in the
functionality dataset are usually simple, which lack the complexity
of triggering security issues in the generated code. Thus, they are
not suited for systematically assessing security.
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# Instruction: Create n random txt files in a specific directory, write only a single digit random integer into each file, and

then reset the cursor to the beginning of each file.

CoONOUTA WNE

1 import os

2 import random

3 def task_func(directory, n_files):

4

5 if not os.path.exists(directory):

6 os.makedirs(directory)

7

8

9 for i in (n_files):

10 file_name = os.path.join(directory, f'file_{i+1}.txt")|
11 with (file_name, 'w') as file:

12 file.write(str(random.randint(@, 9)))

13

14

15 for i in (n_files):

16 file_name = os.path.join(directory, f'file_{i+1}.txt")
17 with (file_name, 'r+') as file:

18 file.seek(@) ?

19

20 return n_files DeepSeek-Coder

import os
import random
def task_func(directory, n_files):

2
return n_files DeepSeek-Coder + CodeGuardPlus

Figure 2: Generated code by DeepSeek-Coder-V2-Lite before (left) and after (right) applying CodeGuard+. The code on the left
is functional but insecure. CWE-22 vulnerabilities exist at lines 6, 10, and 16. The code on the right is secure but not functional.

2.2 Problems of Current Evaluation Schemes

Problem (I). The existing works commonly run CodeQL [7], a
static vulnerability scanner, to assess the security of the generated
code. CodeQL employs rules referencing the CWE list [1] for de-
tecting security vulnerabilities. However, the rules do not cover
the full CWE list. Further, the rules for a single CWE item can be
incomplete. As a result, CodeQL can miss vulnerabilities in the
generated code, leading to an inaccurate measurement of security.

Figure 1 shows a piece of “secure” code generated by Qwen2.5-
Coder-7B-Instruct enhanced by CodeGuard+ [21], following the
instruction at the top of the figure. CodeQL, using both the default
rules and GitHub-extended rules [8] for CWE-78 [39], detects no
vulnerabilities in the code. However, line 15 in the code directly
executes the user-provided shell script without checking for ma-
licious commands, representing a CWE-78 issue. In this case, the
security of CodeGuard+ is overestimated.

Problem (II). Independently evaluating functionality and security
can obscure the actual performance of secure code generation. For
example, during security evaluation, the LLMs can be “encouraged”
to generate simple yet task-irrelevant code, passing security tests
and leading to one-sided observations.

Figure 2 shows a case where DeepSeek-Coder-V2-Lite [5] is
asked for code to create a list of files with a random number in
them and reset the cursor, using the prompt at the top of the figure.
The generated code (on the left) satisfies the task requirements
and passes all unit tests. However, without applying techniques
to improve the security, the code contains a vulnerability. Line
6 on the left-hand side uses external input to create a directory
without proper sanitization. This can be exploited to bypass the
limitation to restricted directories (CWE-22 [38]). Similar issues
also exist at lines 10 and 16. To secure the code generation, we
apply CodeGuard+ [21] on top of DeepSeek-Coder-V2-Lite to re-
run the task. The newly generated code, presented on the right of
Figure 2, removed all code except for package import and function
declaration. Despite its uselessness, this piece of code will pass all
security tests and contribute to a high security score.

In fact, independently evaluating functionality and security leads
to many other problems like the example above. We categorize them
into five categories and present their details in Section 4.3.

3 Research Questions and Study Methodology
3.1 Scope and Research Questions

Scope of Our Study. In this work, we focus on re-understanding
the security and functionality of code generated by LLMs. Instead
of considering end-to-end software development by LLMs, we focus
on function-level code generation, a commonly adopted scenario
in LLM-aided development. Our study does not aim at the perfor-
mance of the most advanced models but instead targets secure code
generation techniques (see Section 3.2) applied to mainstream LLMs,
including open-source and proprietary models, such as CodeLlama,
DeepSeek-Coder, and GPT-4o.

Research Questions. We focus on the following research ques-
tions. We refer to the evaluation of both security and functionality
as the combined measure.

¢ (RQ1) How do vulnerability scanners perform when assess-
ing the security of LLM-generated code?

¢ (RQ2) How do secure code generation techniques perform
when security and functionality are evaluated together?

e (RQ3) What leads to the disparity (if any) between function-
ality observed under combined measure and functionality
assessed independently?

¢ (RQ4) What contributes to the disparity (if any) between
security observed under combined measure and security
assessed independently?

3.2 Study Setup

Secure Code Generation Methods. We consider four state-of-the-
art secure code generation techniques published in 2023 and 2024:
SVEN [23], SafeCoder [24], CodeGuard+ [21], and PromSec [41].
These methods are among the most recent and widely recognized,
including SVEN, the CCS 2023 Distinguished Paper. Table 1 summa-
rizes these techniques. SVEN and SafeCoder are fine-tuning-based
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Table 1: Summary of existing secure code generation tech-
niques. White-box denotes whether the technique requires
access to the model weights, where @, ©, and O indicate full,
partial, and no access, respectively.

Method White-box Weight Update Prompt Mod. Decoding Ctrl External Tool
SVEN [23] [J v

SafeCoder [24] o v

CodeGuard+ [21] D v v

PromSec [41] O v v

Table 2: Summary of the employed datasets. CWE Label
means if each task is accompanied with the annotation of
potential CWE vulnerabilities. NL and CT stand for natural
language instruction and code template, respectively. Sec-
CodePLT+ is an enhanced version SecCodePLT. The test cases
for SecCodePLT+ are self-prepared.

#Sample Language Prompt Unit Test Avg. Test Cases CWE Label

BigCodeBench 1,140 Python NL, CT v 5.6 E3
SecCodePLT+ 1,201 Python NL, CT v 7.5 v

methods. They construct a training dataset containing code snip-
pets with and without vulnerabilities, which is used to fine-tune
the model. Therefore, they require white-box access to the model’s
weight parameters to update them. Once the model is updated, it
functions the same as the original model.

CodeGuard+ does not require fine-tuning but instead controls
the generation process during inference. Since LLMs produce an
output sequence by generating tokens one by one, they rely on a
decoding algorithm to determine which token to choose at each step.
CodeGuard+ modifies the decoding algorithm to favor tokens that
lead to a secure sequence. As a result, it requires gray-box access to
the model, specifically to the decoding algorithm during inference.
Additionally, CodeGuard+ modifies the original task prompt by
incorporating security-related text, such as “use snprintf” to avoid
buffer overflow vulnerabilities.

PromSec is a prompt engineering-based technique that itera-
tively refines the task prompt. Specifically, it first leverages external
tools such as Bandit [48] to identify vulnerabilities in the generated
code. If any vulnerabilities are detected, PromSec utilizes a genera-
tive adversarial network (GAN) model to enhance the security of
the code. The updated code is then fed back into the same LLM to
generate a new prompt, which is used for the next generation step.
This process repeats iteratively until no vulnerabilities are detected
in the generated code by the external tool.

Code Datasets. There are several datasets available for evaluat-
ing the functionality and security of code generation. However, as
explained in Section 2, the tasks in the functionality dataset are usu-
ally simple, which cannot trigger security issues in the generated
code for assessing security. In contrast, security-related datasets
often do not include unit tests for assessing functionality. For our
study, we use two public datasets: BigCodeBench [70] and SecCode-
PLT [62], whose information is shown in Table 2. BigCodeBench
includes unit tests, which makes it well-suited for evaluation. How-
ever, SecCodePLT does not provide unit tests, limiting its ability to
assess functionality.
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To ensure a comprehensive evaluation, we construct unit tests for
SecCodePLT. Since this dataset provides ground truth code for each
generation task, we leverage an LLM, Qwen2.5-Coder-32B [26], to
generate unit tests. Specifically, we prompt Qwen2.5-Coder-32B to
create a set of test inputs based on the ground truth code. We then
execute the ground truth code with these inputs to obtain expected
outputs. Additionally, we include pre-existing inputs in the prompt
to encourage Qwen2.5-Coder-32B to generate diverse test cases. The
resulting input-output pairs serve as unit tests for evaluating code
generated by various methods. Using this approach, we generated
an average of 7.5 unit test cases per task for SecCodePLT, even
more than the 5.6 test cases per task provided by BigCodeBench.
The enhanced SecCodePLT dataset, which we call SecCodePLT+,
can be found here [9].

There are other security-related datasets, such as CyberSecE-
val [13] and SecurityEval [53]. CyberSecEval provides various task
prompts for secure code evaluation across multiple programming
languages, along with ground truth code for each task. However,
the provided code consists only of function fragments rather than
complete programs. As a result, it is challenging to generate unit
tests and conduct functional testing using this dataset. SecurityEval
contains only 130 samples and lacks ground truth code, making
it difficult to construct unit tests. Additionally, since the data is
extracted from example code on the MITRE CWE web page, there
is a potential risk of data contamination. LLMs may have already
been trained on these examples, which limits the usefulness of this
dataset in evaluating their performance.

Measurement. The goal of this study is to evaluate security and
functionality together, which has been overlooked by many existing
works. One metric introduced by [21, 47] considers both aspects. It is
called Secure-Pass@k, which calculates the percentage of generated
code snippets that pass all unit tests and do not contain any security
vulnerabilities. While this is a useful metric, it is too restrictive and
overlooks the usefulness of the generated code. For instance, LLMs
may not produce a fully functional code snippet that passes all unit
tests. However, the generated code snippet may be mostly correct
but miss a few lines, such as for handling different data types. Such
a snippet can still be useful to developers with minimal effort.

Therefore, we propose a new metric, SAFE!, which considers
both the security and functionality of LLM-generated code while
introducing a relaxation on functionality. Specifically, it is computed
using the following formula:

ecase-passi -1

1
SAFE@k = % Zl: securej - ————. (1)

e—1

Here, secure; denotes whether the i-th generated code snippet in the
top-k by an LLM contain vulnerabilities, where 1 indicates no vul-
nerabilities and 0 otherwise. case-pass; represents the average unit
test passing rate for the i-th code in the top-k. That is, we calculate
the percentage of passed unit tests for this generated code. Note that
we leverage the exponential function to calibrate the unit test pass-
ing score, assigning significantly lower scores to samples that pass
very few test cases. This metric is more fine-grained than Secure-
Pass@k, as it takes the unit test passing rate into account. While

!Security and Functionality Evaluation.
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Figure 3: The results of Secure@1 from each static analyzer and Pass@1 on BigCodeBench. The results are separated by a
dashed line. CL, BR, and BT represent CodeQL, Bearer, and Bandit, respectively. “Case” and “Task” indicate the Pass@1 scores
calculated at the test case level (considering percentage of passed unit tests) and the task level (passing all unit tests).

[ Base
Model = Qwen2.5-Coder

[0 SVEN

Model = Codellama

CL BR BT Case Task
Score Type

CL BR BT Case Task
Score Type

I SafeCoder
Model = DeepSeek-Coder

[ CodeGuardPlus [ PromSec

Model = Mistral Model = StarCoder

CL BR BT Case Task CL BR BT Case Task CL BR BT Case Task
Score Type

Score Type Score Type

Figure 4: The results of Secure@1 from each static analyzer and Pass@1 on SecCodePLT+. The results are separated by a
dashed line. CL, BR, and BT represent CodeQL, Bearer, and Bandit, respectively. “Case” and “Task” indicate the Pass@1 scores
calculated at the test case level (considering percentage of passed unit tests) and the task level (passing all unit tests).

SAFE@*k is designed to be flexible and applicable to various evalu-
ation scenarios, we primarily report results for k = 1 in our evalua-
tion. This aligns with common practice in the literature [23, 24] and
reflects real-world usage, where users typically see only the top-1
output from LLMs such as ChatGPT or code assistants like Cursor.

LLMs. We employ five popular open-source code LLMs for our
study: CodeLlama-7B [50], Qwen2.5-Coder-7B [26], DeepSeek-Coder-
V2-Lite [5], Mistral-7B [30], and StarCoder-1B [36]. Additionally, we
include two commercial APIs: GPT-3.5-Turbo [43] and GPT-4o [27].
We include only smaller-sized LLMs (e.g., Qwen2.5-7B instead of
32B) and older-version models (e.g., StarCoder instead of StarCoder
2) to be consistent with those used by existing works [23, 24]. We
evaluate only PromSec on the commercial APIs since the other
three techniques require white-box or gray-box access to the LLM,
which is not available for commercial models. Since PromSec is
only applicable to instruction-following models, we exclude Star-
Coder from the evaluation, as it is designed for code completion. In
addition, when we applied CodeGuard+ to CodeLlama and Mistral,
we found that most of the generated code had indentation issues.
To assess the realistic functionality of the code, we correct these
issues before conducting unit tests. Specifically, we used a Python
syntax parser to detect the problem (three space instead of four)
and developed a script to automatically correct it.

Vulnerability Scanners. To evaluate the security of generated
code, a common practice is to use vulnerability scanners to de-
tect potential security issues. We adopt three widely used static
analyzers: CodeQL [7], Bearer [17], and Bandit [48]. Additionally,
we consider LLMs for vulnerability detection, as they have shown

promising results [32, 68]. In our study, we use two LLMs: Qwen2.5-
72B [61] and Llama3.3-70B [22], for security evaluation.

4 Evaluation Results
4.1 (RQ1) Vulnerability Scanner Performance

To evaluate the security of LLM-generated code, a common practice
is to use a vulnerability scanner to detect potential vulnerabilities.
If no vulnerabilities are detected, the code is considered secure.
Prior research [23, 24, 65] has primarily leveraged the static ana-
lyzer CodeQL [7] to assess code security. However, as discussed
in Section 2, CodeQL can fail to detect certain vulnerabilities in
generated code. Therefore, we also employ two other widely used
static analyzers, Bearer [17] and Bandit [48], to measure security.

The first three groups in each chart in Figure 3 present the se-
curity results evaluated by the three vulnerability scanners on the
BigCodeBench dataset. CL, BR, and BT correspond to CodeQL,
Bearer, and Bandit, respectively. Each chart represents the results
for an LLM, and each bar corresponds to a different secure code gen-
eration technique. The blue bar represents the base model. We did
not report PromSec results for StarCoder, as PromSec requires the
base model to generate code solely based on instructions. However,
StarCoder only supports code completion tasks.

As shown in Figure 3, CodeQL (first group) reports nearly 100%
security scores for all techniques, including the base model. (Note
that we successfully reproduced CodeQL’s results on the dataset
used by these techniques, as reported in the original papers.) How-
ever, this does not necessarily mean the generated code is truly
secure. As we can see the results from Bearer and Bandit (second
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Figure 5: CWE vulnerabilities identified by the three static
analyzers for Qwen2.5-Coder enhanced by SafeCoder on the
BigCodeBench dataset.

and third groups), the security scores are approximately 25% lower
than those reported by CodeQL for most models. For example, on
Qwen2.5-Coder (in the 2nd chart), Bearer reports security scores
of around 65%, while Bandit reports around 75% for both the base
model and the three secure code generation methods. Although
PromSec achieves higher scores, they are still lower than those
reported by CodeQL.

Figure 4 reports the results for the SecCodePLT+ dataset. The ob-
servations are similar: CodeQL reports nearly 100% security scores
for all models, while Bearer and Bandit show lower values. Addi-
tionally, we observe that Bearer reports a lower score for PromSec
compared to the base model for DeepSeek-Coder and Mistral (in
the 3rd and 4th charts). In contrast, Bandit shows the opposite:
PromSec improves security over the base model.

Finding 1: The security scores reported by different vulnerability
scanners are inconsistent and can even be contradictory. Relying on
a single vulnerability scanner is insufficient for comprehensively
assessing the security of generated code.

Figure 5 presents the reported CWE vulnerabilities identified
by the three static analyzers for Qwen2.5-Coder enhanced by Safe-
Coder on the BigCodeBench dataset. The security scores reported
by the scanners are 0.9877, 0.6535, and 0.7482 for CodeQL, Bearer,
and Bandit, respectively. From the figure, we observe that Cod-
eQL identifies only a very small number of CWE vulnerabilities
(i.e., 4). Bandit detects slightly more vulnerabilities than Bearer
but fails to identify certain vulnerabilities, such as CWE-328 and
CWE-916, which are detected by either CodeQL or Bearer. The
most frequently detected vulnerability is CWE-327, identified by
Bearer with 200 occurrences, which relates to the use of a broken
or risky cryptographic algorithm.

Finding 2: Different vulnerability scanners have varying strengths
in identifying different types of vulnerabilities. No single scanner
can cover all potential security issues.

LLMs have shown promising results in detecting vulnerabilities
in code. Therefore, we leverage two LLMs, Qwen2.5-72B [61] and
Llama3.3-70B [22], to evaluate the security of generated code. Fig-
ure 6 presents the results reported by the LLMs and the three static
analyzers for the Mistral model on SecCodePLT+. Surprisingly, the
security scores reported by the LLMs are significantly lower than
those from the static analyzers. Additionally, the relative rankings
of different secure code generation techniques vary between the
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two approaches. To understand this significant disparity, we con-
duct a manual inspection. In particular, we use SVEN as an example
and use a fixed random seed to sample 44 cases from the generated
code, ensuring an unbiased selection. We then perform a manual
inspection of the sampled code.

Table 3 summarizes our manual analysis. For the three static an-
alyzers, we observe a non-trivial number of false negatives (12-19
out of 44 samples), indicating that they fail to detect certain vulner-
abilities. We have discussed such examples in Section 2. Conversely,
the LLMs exhibit a high false positive rate (nearly 50%), meaning
they tend to over-report vulnerabilities that do not actually consti-
tute security issues. For instance, in one case, Qwen2.5-72B flags
a CWE-532 vulnerability, suggesting a sensitive information leak
through logging. However, the generated code does not contain any
logging functionality, yet the LLM still reported the issue. These
findings are consistent with what has been reported in the litera-
ture [18, 32, 37], which indicates that the effectiveness of leveraging
LLMs in vulnerability detection remains an open research question.

Finding 3: LLMs are helpful in detecting vulnerabilities. However,
they also produce a significant number of false positives, which
hinders their application in security assessment for generated code.

4.2 (RQ2) On the Combined Measure of Existing
Techniques

Existing secure code generation approaches assess the functionality
and security of LLM-generated code independently, using different
datasets. Here, we evaluate both aspects on the same dataset. Fig-
ure 3 presents the results on BigCodeBench. Existing techniques
can improve security scores for most models, although different
vulnerability scanners may produce inconsistent relative rankings.
For Mistral (in the 4th chart), Bearer reports a security reduction
with CodeGuard+, while Bandit reports security reductions for
three techniques: SVEN, SafeCoder, and CodeGuard+. PromSec
consistently enhances security across four models.

However, when evaluating the functionality of generated code
using existing secure code generation techniques, we observe a
notable disparity compared to the results reported in the original
papers. The last two groups in each chart in Figure 3 illustrate the
functional correctness of the generated code. The “Case” group
represents test case-level scores, where we calculate the percentage
of passed unit tests for each task and then average the values across
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Figure 7: The overall results of Secure-Pass@1 and SAFE@1 on BigCodeBench. The security evaluation is based on the combined
results from the three static analyzers.
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Figure 8: The overall results of Secure-Pass@1 and SAFE@1 on SecCodePLT+. The security evaluation is based on the combined

results from the three static analyzers.

Table 4: Statistical analysis results for secure code generation
methods. T-tests are conducted to assess whether there is a

all tasks. This provides a fine-grained view of functional correct-
ness. The “Task” group, on the other hand, represents task-level

results, where we count only the samples that pass all unit tests. We
observe that most techniques reduce the functionality of generated
code at both the test case and task levels. This suggests that these
techniques may not actually be fixing vulnerabilities in the gen-
erated code but instead sacrificing functionality to make the code
“appear” more secure. We have previously discussed an example
case in Section 2 and will further explore this issue in the following
RQs. CodeGuard+ improves functionality scores on CodeLlama,
Qwen2.5-Coder, and Mistral. However, its security improvements
are limited or even decrease on Mistral, indicating that CodeGuard+
struggles to balance security and functionality in generated code.

The observations on the SecCodePLT+ dataset are similar, as
shown in Figure 4. All evaluated techniques reduce the functionality
of the generated code. SVEN and SafeCoder show a significant drop
(over 50%) in functional correctness for Codellama. This is likely
due to the challenging nature of SecCodePLT+, where even GPT-
40 achieves only 8.74% task-level performance. Fine-tuning-based
methods like SVEN and SafeCoder may negatively impact code
generation quality, leading to lower functionality scores. Moreover,
security improvements are also limited for most models. Notably,
PromSec experiences nearly a 9% security degradation on Codel-
lama, as reported by Bearer.

Finding 4: Existing secure code generation techniques can enhance
the security of generated code to some extent, but often at the expense
of functional correctness.

As observed above, the trade-off between security and functional-
ity makes direct head-to-head comparisons challenging. Therefore,
we need a metric that evaluates both aspects of generated code

statistically significant difference between the base model
and each secure code generation method. A p-value (p) <
0.05 indicates statistical significance. Cohen’s d is reported
as the effect size (ES), with values around 0.2, 0.5, and 0.8
representing small, medium, and large effects, respectively.

BigCodeBench SecCodePLT+

Secure-Pass@1 SAFE@1  Secure-Pass@1 SAFE@1

Model Method P ES P ES | p ES P ES

SVEN 0.00 0.236 0.00 0.229 | 0.59 0.021 0.09 0.069
SafeCoder  0.00 0.182 0.00 0.168 | 0.00 0.119 0.00 0.23
CodeGuard+ 0.00 0.182 0.00 0.202 | 0.16 0.057 0.00 0.134
PromSec 0.00 0.212 0.00 0.251 | 0.05 0.079 0.02 0.093
SVEN 0.01 0.101 0.05 0.081 | 0.37 0.036 0.77 0.011
SafeCoder  0.74 0.013 0.92 0.003 | 0.39 0.034  0.06 0.074
CodeGuard+ 0.12 0.06 0.47 0.029 | 0.39 0.034  0.05 0.077
PromSec 0.00 0.512 0.00 0.603 | 0.07 0.073 0.00 0.136
SVEN 0.00 0.176 0.00 0.17 | 0.23 0.048 0.03  0.084
SafeCoder  0.00 0.116 0.00 0.157 | 0.73 0.014  0.84 0.007
CodeGuard+ 0.95 0.002 0.76 0.012 | 0.56 0.023 0.20 0.051
PromSec 0.00 0.370 0.00 0.411 | 0.23 0.048 0.26 0.045
SVEN 0.04 0.083 0.00 0.224 | 0.00 0.114  0.00 0.207
SafeCoder  0.00 0.206 0.00 0.290 | 0.40 0.033 0.95 0.002

Codellama

Qwen2.5-Coder

DeepSeek-Coder

Mistral CodeGuard+ 0.00 0336 000 0240|028 0043 020 0.051
PromSec 003  0.087 000 0224|009 0067 000 0.140
SVEN 005 0079 047 0030|029 0042 003 0086
StarCoder SafeCoder 001  0.102 000 0319|054 0024 057 0.022

CodeGuard+ 0.86 0.006 0.60 0.021 | 0.54 0.024 0.10 0.067
GPT-3.5-Turbo PromSec 0.00 0.171 0.00 0.146 | 0.90 0.004 0.86 0.007
GPT-40 PromSec 0.29 0.043 0.87 0.006 | 0.51 0.026 0.13  0.061

in a unified manner. We use the two metrics Secure-Pass@1 and
SAFE@1 discussed in Section 3.2 for the evaluation.

Figure 7 presents the results using the two metrics on the Big-
CodeBench dataset. We also report the t-test and effect size (Cohen’s
d) of these results in Table 4. Since we employ three static analyzers
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Table 5: Results of PromSec using commercial APIs on BigCodeBench and SecCodePLT+.

BigCodeBench SecCodePLT+
Secure@1 Pass@1 Secure-Pass@1 SAFE@1 Secure@1 Pass@1 Secure-Pass@1 SAFE@1
Model Method CodeQL  Bearer  Bandit Test Task Overall Overall [ CodeQL  Bearer  Bandit Test Task Overall Overall
GPT-3.5-Turbo Base 0.9904 0.6447 0.7544 0.7658 0.5078 0.3219 0.4445 0.9886 0.7324 0.8132 0.2182 0.0574 0.0308 0.0979
) PromSec 0.9912 0.7325 0.8465  0.5809  0.3166 0.2447 0.3810 0.9862 0.7235 0.8043  0.2139  0.0599 0.0316 0.0996
GPT-40 Base 0.9904 0.6395 0.7482 0.8217 0.6043 0.3771 0.4794 0.9951 0.7510 0.8035 0.2391 0.0874 0.0399 0.1071
PromSec 0.9904 0.6860 0.7454 0.7143 0.4622 0.3561 0.4765 0.9935 0.7776 0.8399 0.2158 0.0732 0.0349 0.1228

to evaluate security in this paper, and each detects different types
of vulnerabilities, we aggregate their results by considering a code
snippet secure only if none of the three scanners detects a vulnera-
bility. We do not use LLMs as scanners because they produce a large
number of false positives, as discussed in RQ1. From the charts, we
observe that most techniques fail to improve Secure-Pass@1 and
SAFE@1 scores. For instance, all techniques except CodeGuard+
show a significant reduction in both metrics compared to the base
models (“Base” in the legend) on CodeLlama and Mistral, with sta-
tistically significant differences (p < 0.05). PromSec exhibits more
than a 50% drop on Qwen2.5-Coder and DeepSeek-Coder. Despite
being a state-of-the-art method published at CCS 2024 [41], Prom-
Sec’s performance is less impressive when evaluating security and
functionality together. CodeGuard+ demonstrates improvements
on CodeLlama and Mistral models, with statistically significant
differences (p < 0.05) and small effect sizes (Cohen’s d = 0.202
and 0.240, respectively). CodeGuard+ requires constraints to be
provided in the prompt, which were manually crafted in the orig-
inal paper [21]. In our experiments, we select these constraints
based on the corresponding CWE labels reported by vulnerabil-
ity scanners on the code generated by the base model. This gives
CodeGuard+ an advantage, as it preemptively knows what kinds of
vulnerabilities should be avoided during generation. That is why it
can improve performance on certain models. Other methods such
as SVEN and SafeCoder are training-based methods and cannot
incorporate CWE information. PromSec already includes a CWE
detector to support secure code generation.

Figure 8 presents the results on SecCodePLT+. Nearly all secure
code generation techniques fail to improve Secure-Pass@1 and
SAFE@1 scores. This is largely due to the challenging nature of
SecCodePLT+. Even GPT-4o0, a state-of-the-art commercial LLM,
struggles to achieve a high score as we will discuss later. Addition-
ally, on CodeLlama, we observe that CodeGuard+ slightly outper-
forms PromSec in the Secure-Pass@1 metric with no statistically
significant difference (p > 0.05). However, the results are reversed
for SAFE@1. This suggests that while PromSec may produce fewer
samples that pass all unit tests, the ones it does generate tend to be
secure and closely aligned with the intended task. SAFE@1, there-
fore, provides a more fine-grained interpretation of the results.

Finding 5: Existing techniques show limited effectiveness in im-
proving secure code generation when evaluating security and func-
tionality simultaneously.

While Figure 7 and Figure 8 present results on open-source
models, we also evaluate two commercial APIs in our experiments.
As previously discussed, all evaluated techniques except PromSec
require white-box or gray-box access to the LLM, which is not

available for commercial APIs. Therefore, this experiment primarily
focuses on PromSec. Table 5 reports results on the BigCodeBench
and SecCodePLT+ datasets. Columns Secure@1 and Pass@1 present
individual security scores from different vulnerability scanners
along with unit test results, while the following columns show the
Secure-Pass@1 and SAFE@1 scores.

PromSec shows a significant improvement in security for GPT-
3.5 on BigCodeBench (p < 0.05, Cohen’s d = 0.146). However, the
Pass@1 scores decrease substantially (p < 0.05). This is reflected
in the Secure-Pass@1 and SAFE@1 scores, which drop by 23%
(from 0.3219 to 0.2447) and 28% (from 0.4445 to 0.381), respectively.
GPT-3.5 was the default model used for evaluation in the original
PromSec paper [41], but it still cannot improve overall performance
when security and functionality are measured together. Security
improvements for GPT-4o0 and on the SecCodePLT+ dataset are lim-
ited, with PromSec showing little improvement in Secure-Pass@1
(p = 0.51) and SAFE@1 scores (p = 0.13). Another observation is
that even GPT-3.5 and GPT-4o exhibit very low Pass@1 scores on
the SecCodePLT+ dataset. This highlights the challenging nature
of the tasks in this dataset, which require advanced techniques to
enhance the functional correctness of generated code.

Finding 6: Commercial LLM APIs do not offer any additional
advantages for existing secure code generation techniques.

4.3 (RQ3) On the Performance Disparity of
Functionality

In RQ2, we observe the degradation in functionality of generated
code by existing techniques. We further analyze the results to bet-
ter understand this phenomenon. Specifically, we collect all tasks
where the generated code by the base models is functionally correct
and inspect the outcomes when applying the secure code genera-
tion techniques. Table 6 presents the results on the two datasets.

For each dataset, the first two columns show the results for the

aforementioned cases.

o The column “¥év to UX” denotes cases where insecure but
functional code by the base model becomes secure but non-
functional after applying existing techniques.

e The column ‘U« to UX” represents cases where secure and
functional code becomes secure but non-functional after apply-
ing existing techniques.

We observe that around 10% to 30% of tasks fall under the “¥kv

to UX” category. Notably, CodeGuard+ with StarCoder on Big-

CodeBench leads to 80% of tasks becoming non-functional after

improving security. The percentages are generally similar between

BigCodeBench (Avg. 9.97%) and SecCodePLT+ (Avg. 11.75%), with

no statistically significant difference (p > 0.05). For the U+ to UX”



Rethinking the Evaluation of Secure Code Generation

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

Table 6: Comparison of security and functionality of the generated code between the base model and secure code generation
techniques. U indicates secure code and ¥ indicates insecure code. ¥ and X represent the functional correctness of the code.

BigCodeBench SecCodePLT+

Model Method v 100X Ov t0U% U« tokv Uito ik | kv 0 UX Uv 100X UV to kv Uto ik
SVEN 18.81% 69.00% 0.00% 3.15% 43.58% 76.74% 0.00% 4.08%

Codellama SafeCoder 22.77% 73.00% 0.00% 3.09% 48.71% 62.79% 0.00% 5.37%
CodeGuard+ 11.88% 33.55% 1.34% 4.07% 12.82% 39.53% 2.32% 6.42%

PromSec 12.87% 55.70% 0.67% 1.82% 5.10% 46.51% 11.62% 12.85%

SVEN 2.59% 33.87% 0.32% 1.74% 6.12% 23.68% 7.89% 6.32%

Qwen2.5-Coder SafeCoder 1.03% 20.64% 0.32% 3.19% 12.24% 42.10% 5.26% 5.43%
CodeGuard+ 1.03% 16.77% 0.32% 1.88% 2.04% 28.94% 10.52% 7.07%

PromSec 35.75% 77.09% 0.96% 2.03% 8.16% 50.00% 5.26% 9.22%

SVEN 47.26% 59.45% 135% 143% | 10.00% 36.58% 487% 5.53%

DeepSeek-Coder SafeCoder 13.69% 28.37% 1.35% 2.00% 4.00% 31.70% 4.87% 6.68%
CodeGuard+ 21.23% 39.64% 0.45% 1.57% 2.00% 26.82% 2.43% 5.76%

PromSec 43.15% 69.81% 0.00% 0.42% 0.00% 34.14% 24.39% 14.99%

SVEN 8.33% 72.46% 000%  1L77% | 42.30% 66.66% 9.09% 7.81%

Mistral SafeCoder ~ 13.88% 84.05% 000%  1177% | 3.84% 27.27% 6.06% 7.44%
CodeGuard+  0.00% 8.69% 0.00%  1276% | 11.53% 45.45% 3.03% 6.71%

PromSec 30.55% 62.31% 0.00%  1239% | 15.38% 27.27% 2121%  18.68%

SVEN 40.00% 68.42% 0.00% 515% | 0.00% 21.33% 133% 0.98%

StarCoder SafeCoder 0.00% 52.63% 0.00% 0.00% | 0.00% 21.33% 0.00% 3.67%
CodeGuard+  80.00% 57.89% 0.00% 0.73% |  0.00% 14.66% 0.00% 0.71%

GPT-3.5-Turbo PromSec 20.28% 31.33% 1.63% 1.88% 3.12% 24.32% 2.70% 7.89%
GPT-40 PromSec 8.10% 16.74% 0.46% 0.44% 3.50% 29.16% 2.08% 6.02%
Average 9.97% 42.04% 0.62% 4.11% 11.75% 35.04% 5.15% 6.87%

Table 7: Case study on the code generated by existing tech-
niques using DeepSeek-Coder on BigCodeBench for the “Y¥v
to UX” category. The value in parentheses denotes the num-
ber of cases for each technique in this category. “NFI” rep-
resents cases where the generated code did not follow the
instruction. “FN” indicates cases where the code snippet con-
tains a vulnerability that was missed by the static analyzers.

Removed Code  Junk Code NFI FN Other

SVEN (69) 75.36% 8.7% 0% 2.89% 13.04%
SafeCoder (20) 60% 0% 0% 25% 15%

CodeGuard+ (31) 67.74% 6.45% 12.9%  3.23% 9.68%
PromSec (63) 92.06% 0% 7.94% 0% 0%

category, the percentages are even higher, with most cases ranging
from 20% to 60% on BigCodeBench and 20% to 40% on SecCode-
PLT+. This indicates that while existing techniques are effective in
fixing vulnerabilities, they tend to compromise the functionality
of generated code for samples that were previously correct. This
explains the functionality degradation we observed earlier.

In summary, SVEN, SafeCoder, CodeGuard+, and PromSec can
cause originally functional code to become non-functional in up to
76.74%, 84.05%, 80%, and 77.09% of cases, respectively. We perform
a two-way ANOVA test to assess whether the secure code genera-
tion method has a statistically significant effect relative to the base
model. The results show that, for all secure code generation meth-
ods across both datasets, the p-value is less than 0.001, meaning
that existing methods can significantly degrade the performance
of the base model.

Finding 7: Existing secure code generation techniques negatively
impact the base model, transforming originally functional code into
non-functional code.

To better understand the issue, we manually inspect the cases
in the “¥E+v to UX” category. We use DeepSeek-Coder on Big-
CodeBench as an example. Table 7 presents the results for the four

existing techniques. We classify the cases into five categories. These

categories are based on our manual inspection of all cases, with

discrepancies resolved through majority voting among the authors.

o Removed Code: This category includes cases where techniques
simply remove vulnerability-related code to improve security, as
shown in the example in Section 2. We observe a large number
of cases in this category, with PromSec removing insecure code
in 92.06% of the samples.

o Junk Code: The generated output is nonsensical, such as the
repeated word “task task task” SVEN and CodeGuard+ show
around 6%-8% of cases in this category.

e Not Following Instruction (NFI): In these cases, the LLM gen-
erates code completely irrelevant to the task. CodeGuard+ and
PromSec have a non-trivial percentage of cases in this category.

o False Negatives (FN): These are cases where static analyzers
fail to detect vulnerabilities, which was discussed in RQ1.

e Other: In a few cases, the generated code is missing necessary
package imports or is otherwise incomplete, leading to functional
incorrectness.

Finding 8: The security improvements achieved by existing tech-
niques come at the cost of sacrificing the functionality of the gen-
erated code, primarily by removing vulnerability-related code and
generating irrelevant or garbage output.

4.4 (RQ4) On the Performance Disparity of
Security

While existing secure code generation techniques were designed
to improve the security of LLM-generated code, they may inadver-
tently degrade security for certain tasks. We have already observed
the performance reduction in Figure 3 and Figure 4. Here, we specif-
ically analyze the scenario where the code generated by the base
model was originally secure, but vulnerabilities are detected after
applying existing techniques. We refer to this as the non-monotonic
security improvement of these methods.
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# Instruction: Copies data from an Excel spreadsheet into a new Excel file, then reads the new Excel file and returns its contents.

1 import pandas as pd

2 import os

3 def task_func(original_location, new_location, sheet_name):
4

5 if not os.path.exists(original_location):

6 raise FileNotFoundError("File does not exist.")

7

8 try:

9

10 df = pd.read_excel(original_location, sheet_name)
11

12

13 df.to_excel(new_location, index=False)

14

15

16 new_df = pd.read_excel(new_location)

17

18 return new_df

19

20 except KeyError: 2

21 raise ValueError( ess ) Qwen—Coder

1
2
3

import pandas as pd
import os
def task_func(original_location, new_location, sheet_name):

if not os.path.exists(original_location):
raise FileNotFoundError(f"The file does not exist.")

os.system(f'cp {original_location} {new_location}')

try:
df = pd.read_excel(new_location, sheet_name)
except KeyError:

raise ValueError( ees )

return df

Qwen-Coder + CodeGuardPlus

Figure 9: Generated code by Qwen before (left) and after (right) applying CodeGuard+. The code on the left is both functional
and secure. However, after applying CodeGuard+, a CWE-78 vulnerability appears at line 9 in the code on the right. The

differences are depicted in

Table 6 presents the results for the scenario described above.

Specifically, we consider two cases:

e The column ‘P« to M~ denotes cases where secure and func-
tional code by the base model becomes insecure but remains
functional after applying existing techniques.

e The column “U to ¥¥” represents cases where secure code be-
comes insecure after applying existing techniques, regardless of
its functionality.

Observe that for the first case “Uv to M+”, although it rarely
happens, around 1% of samples can still occur, such as CodeGuard+
with Codellama and PromSec with GPT-3.5 on BigCodeBench. The
percentage is much higher in SecCodePLT+. In fact, PromSec with
DeepSeek-Coder exhibits 24.39% of samples becoming insecure
after applying the technique. When functionality is not considered,
more instances of secure code becoming insecure are observed after
applying existing techniques, as shown in the column “U to ¥¥”.
The average percentages are 4.11% for BigCodeBench and 6.87% for
SecCodePLT+, respectively.

Finding 9: The security improvement provided by existing tech-
niques is not monotonic; they may introduce vulnerabilities into
code that was previously secure.

Figure 9 shows an example where the task is to copy data from
an Excel spreadsheet into a new Excel file and then read and return
the contents of the new file. The base model, Qwen2.5-Coder-7B-
Instruct, can generate a secure code snippet as shown on the left.
However, after applying CodeGuard+[21], the generated code on
the right introduces a vulnerability at line 9. It uses the system call
os.system() to execute the copy command, which is passed as
a string. If the original_location or new_location variables
contain malicious input, this could lead to command injection. This
vulnerability corresponds to CWE-78 [39].

5 Limitations and Threats to Validity

The internal threat to validity lies in the limitations of static analyz-
ers, which may produce false negatives, as discussed in Section 2.2.

and red, representing secure and insecure code, respectively.

To mitigate this, we use three different static analyzers and take
the union of all detected CVEs, which helps reduce false negatives.
The external threat to validity primarily lies in the subjects used
in our study. The code generation tasks we examine may not be rep-
resentative. We mitigate this risk by using two recent large datasets
covering over 2,000 tasks. Since these datasets focus mainly on
Python, our findings may not generalize to other programming
languages. However, most existing techniques were originally eval-
uated using Python. Our study re-evaluates these techniques. For
the SecCodePLT dataset, we generate unit tests using an LLM. While
the test cases may be limited, we address this by manually inspect-
ing the generated inputs in conjunction with the ground truth code
and setup files. We also manually calibrate problematic unit tests.
Although we did not manually verify edge case coverage, adding
more cases would likely lower the passing rate, which supports our
conclusion that existing methods are limited. Additionally, the LLMs
and vulnerability scanners used in this study may not be fully repre-
sentative, especially given the rapid development of LLMs. However,
we argue that the general observations regarding existing secure
code generation techniques will still hold, as the issues stem from
their technical design rather than the specific LLMs or tools used.
The construct threat lies in determining a code snippet as vulner-
able during manual inspection. Specifically, we may misidentify a
vulnerability reported by different scanners. To mitigate this threat,
we ensure that each vulnerability is examined by at least two au-
thors. A third author will chime in to resolve any disagreements.

Other Limitations. In our study, we do not include the HumanEval
dataset as it was primarily designed to measure functionality. It con-
sists of relatively simple tasks that lack the complexity required to
trigger security issues in generated code. Additionally, the samples
used in our evaluation might have been included in the training data
of LLMs, potentially causing data contamination. Our employed
two datasets are generally released after the evaluated models. Al-
though this does not guarantee no data contamination, our results
show existing works are still limited in generating secure and func-
tional code, even if the test data may have been trained on, which
further confirms the need for better designs.
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Due to resource limits, we did not repeat every experiment: a full
run costs 430 GPU-hours (= 18 days) on a single NVIDIA A100, and
larger models (e.g., DeepSeek) require more. As a stability check, we
repeated Qwen three times with consistent results, totaling 1,290
GPU-hours (x 54 days) on one A100.

6 Discussion and Future Work

Our study highlights key problems in current evaluation schemes:
(1) relying on a single static analyzer for vulnerability detection, and
(2) using separate datasets for evaluating security and functionality.
Using inappropriate metrics to assess a technique’s performance
could potentially mislead research progress. To address these limi-
tations, our study introduces a more rigorous framework that uses
multiple vulnerability detectors and evaluates both security and
functionality on the same set of generated code. Section 4.3 and
Section 4.4 provide analysis of failure cases, offering insights into
which aspects of existing methods require improvement. These con-
tributions are crucial for establishing a proper evaluation standard.

Future research on secure code generation shall follow our eval-
uation framework by evaluating security and functionality jointly,
such that the performance of proposed techniques is rigorously
assessed and comparable with one another. Our enhanced SecCode-
PLT+ dataset, equipped with unit tests, can serve as a standard
benchmark for comprehensively assessing the performance. Ad-
ditionally, we have categorized various failure cases of existing
techniques, such as removing vulnerability-related code to improve
security. Future efforts shall design new approaches that can address
these problems and maintain the functionality of generated code
while enhancing its security. As we mainly leverage vulnerability
detectors for assessing the security of generated code — which them-
selves may produce false reports — an important future direction
is to develop a reliable and theoretically guaranteed vulnerability
detection method.

7 Related Work

LLM for (Secure) Code Generation. Several Code LLMs have
been specifically trained for code generation tasks using code
datasets, such as CodeGen [42], InCoder [20], SantaCoder [10],
CodeLlama [50], Qwen-Coder [26], DeepSeek-Coder [5], Code-
Stral [4], and StarCoder [36]. Moreover, various studies have fo-
cused on enhancing the performance of Code LLMs by optimizing
prompts [31, 34, 35]. Additionally, some studies use LLMs to synthe-
size test cases and leverage the augmented datasets to improve the
performance of LLM [14, 25, 64]. Other works aiming to improve the
security of LLM-generated code include SVEN [23], SafeCoder [24],
CodeGuard+ [21], and PromSec [41]. We elaborate on the details of
these methods in Section 3.2. However, all existing code generation
studies have either primarily evaluated the functionality of LLM-
generated code or assessed functionality and security separately.
Other applications of LLMs include program repair [59, 60, 67],
code analysis [19, 40, 66], and unit test generation [11, 16, 63].

LLM for Vulnerability Detection. Another line of research fo-
cuses on leveraging LLMs to improve code security. Several studies
have utilized LLMs for vulnerability detection [18, 32, 37, 57, 68].
Khare et al. [32] examined LLMs’ zero-shot capability in detect-
ing vulnerabilities , and their findings show that LLMs outperform
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CodeQL in detecting certain vulnerabilities, such as CWE-22 and
CWE-78 [32]. Other works also demonstrated the LLM’s promis-
ing capability in vulnerability detection [51, 54, 68]. In addition to
leveraging LLMs for vulnerability detection, several studies have
also explored their use in vulnerability repair [28, 46, 69].

Evaluation of LLM-generated Code. Several benchmarks have
been proposed for evaluating the functional correctness of LLM-
generated code, including LiveCodeBench [29], BigCodeBench [70],
HumanEval [15], MBPP [12], and SWE-Arena [6]. Other bench-
marks that consider both functionality and security, such as Sec-
CodePLT [62], CodeGuard+ [21], and CWEval [47], are either lim-
ited by dataset size [21, 47] or lack test cases for nearly half of the
samples [62]. Additionally, there are datasets specifically designed
for code security evaluation, including SecurityEval [53], LLMSe-
cEval [56], CyberSecEval [13], and Sallam [52]. However, these
datasets do not provide unit tests for functional evaluation. We
employ BigCodeBench and SecCodePLT in our study and extend
SecCodePLT by augmenting its unit test cases.

Other than using benchmarks for evaluation, several tools and
metrics exist for assessing the functionality or security of code.
Ren et al. [49] proposed CodeBLEU, which evaluates the accuracy
of generated code compared to the ground truth by considering
n-gram matches, AST matches, and data-flow matches. Le et al. [33]
prompted LLMs to judge the security and helpfulness of code, while
Tong and Zhang [55] examined different prompting techniques for
evaluating the semantic correctness of LLM-generated code. Pearce
et al. [45], Siddiq and Santos [53] analyzed the safety rate of the
generated code using CodeQL. Bhatt et al. [13] proposed an insecure
code detector, which leverages a static analyzer and aims to detect
insecure coding practices rather than specific vulnerabilities. Finally,
Wang et al. [58] conducted a study on LLMs’ capabilities in secure
code generation, vulnerability classification, vulnerability repair,
and vulnerability explanation. However, its goal is not to evaluate
existing secure code generation techniques.

8 Conclusion

We conduct a comprehensive study of four secure code generation
techniques across two benchmarks. Our study results suggest that
future work should employ more than one vulnerability scanner for
security evaluation, as different scanners have varying strengths.
We also show that existing techniques have limited effectiveness in
enhancing the security of LLM-generated code when considering
functionality simultaneously. These techniques tend to sacrifice
functionality to achieve a higher security score, leading to non-
usable generated code. Our study underscores the importance of
evaluating both the security and functionality of LLM-generated
code simultaneously and provides guidelines for future research.
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