
Constrained Optimization with Dynamic Bound-scaling for Effective NLP
Backdoor Defense

Guangyu Shen * 1 Yingqi Liu * 1 Guanhong Tao 1 Qiuling Xu 1 Zhuo Zhang 1 Shengwei An 1 Shiqing Ma 2

Xiangyu Zhang 1

Abstract
Modern language models are vulnerable to back-
door attacks. An injected malicious token se-
quence (i.e., a trigger) can cause the compromised
model to misbehave, raising security concerns.
Trigger inversion is a widely-used technique for
scanning backdoors in vision models. It can-
not be directly applied to NLP models due to
their discrete nature. In this paper, we develop
a novel optimization method for NLP backdoor
inversion. We leverage a dynamically reducing
temperature coefficient in the softmax function
to provide changing loss landscapes to the op-
timizer such that the process gradually focuses
on the ground truth trigger, which is denoted as
a one-hot value in a convex hull. Our method
also features a temperature rollback mechanism
to step away from local optimals, exploiting the
observation that local optimals can be easily de-
termined in NLP trigger inversion (while not in
general optimization). We evaluate the technique
on over 1600 models (with roughly half of them
having injected backdoors) on 3 prevailing NLP
tasks, with 4 different backdoor attacks and 7
architectures. Our results show that the tech-
nique is able to effectively and efficiently detect
and remove backdoors, outperforming 5 base-
line methods. The code is available at https:
//github.com/PurduePAML/DBS.

1. Introduction
Backdoor attack (Gu et al., 2017; Liu et al., 2017) poses
a severe threat to the state-of-the-art NLP models (Devlin

*Equal contribution 1Department of Computer Science, Purdue
University, West Lafayette, IN, USA 2Department of Computer
Science, Rutgers University, Piscataway, NJ, USA. Correspon-
dence to: Guangyu Shen <shen447@purdue.edu>, Yingqi Liu
<liu1751@purdue.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

Figure 1: Difficult loss landscape with a low temperature

et al., 2018b; Vaswani et al., 2017; Radford et al., 2019). By
trojaning a model, attackers can induce model misclassifi-
cation with some pre-defined token sequence (i.e., trigger).
Some recent attacks can even use specific sentence structure
and para-phrasing behavior as the trigger (Qi et al., 2021a;b),
making the attacks very stealthy. Hence, detecting back-
door in a pre-trained model and removing such backdoor
are critical for secure applications of these models. Trigger
inversion is an effective approach for scanning model back-
doors in the vision domain. It leverages gradient descent
to derive a trigger. However, these approaches cannot be
simply extended to NLP models due to the discrete nature of
these models. Specifically, the input space of NLP models
are words or tokens that are sparse in the input space. A
naive trigger inversion algorithm may yield input values that
do not correspond to any valid words or tokens.

There are a number of pioneering works in defending NLP
model backdoors, for example, identifying and removing
triggers from input sentences via grammar checking (Pruthi
et al., 2019), language model (Qi et al., 2020) and model
internal analysis (Chen & Dai, 2021). More can be found
in Section 2. These techniques have encouraging results
in their targeted scenarios. However, some have certain
assumptions such that they may not be as effective when the
assumptions are not satisfied, for example, when the trigger
contains multiple tokens.

https://github.com/PurduePAML/DBS
https://github.com/PurduePAML/DBS

Constrained Optimization with Dynamic Bound-scaling for Effective NLP Backdoor Defense

In this paper, we develop a novel optimization method for
general NLP backdoor inversion. Instead of directly invert-
ing word/token values, we define a convex hull over all
tokens. A value in the hull is a weighted sum of all the
token values in the dictionary. The weight vector hence
has a dimension number equals to the number of tokens
in the dictionary (e.g., 30522 in BERT) and the sum of all
dimensions equals to 1. We then aim to invert trigger weight
vector(s). Ideally, an inverted weight vector should have a
one-hot value, indicating a token in the dictionary. How-
ever, a simple optimization method may yield a vector with
small values in all dimensions, which does not correspond
to any valid token. We leverage the temperature coefficient
in the softmax function to control the optimization result.
Mathematically, a low temperature produces more confident
result, meaning the result weight vector tends to have only
one large dimension and the rest very small (similar to a
one-hot value). However, directly using a low temperature
in optimization renders a very rugged loss landscape, caus-
ing the optimizer stuck in local optimals, namely, producing
one-hot values corresponding to valid tokens that do not
achieve high attack success rate (ASR). In Figure 1, we
render the loss landscape for a real-world trojaned model
from (IARPA, 2020) when a low temperature is used. Ob-
serve that there are many steep peaks, making optimization
very challenging. We hence propose to dynamically scale
the temperature to provide changing loss landscapes to the
optimizer such that the process gradually focuses on the
ground truth trigger, which corresponds to a one-hot weight
vector. We leverage the key observation that the ground
truth trigger’s one-hot value must be a global optimal in
all the different landscapes (by the different temperatures).
Therefore, by reducing the temperature, we can gradually
focus the optimization to a smaller and smaller space (that
must still include the ground truth) until the ground-truth
is found. Our method also features a temperature rollback
mechanism to escape from local optimals. Specially, if us-
ing a low temperature continues to produce local optimals, it
steps back and uses a higher temperature. It exploits another
key observation that local optimals can be easily determined
in NLP trigger inversion (while not in general optimization).
Specifically, the ground truth value, i.e., the global optimal,
must have a very small inversion loss. Hence, inverted val-
ues that do not have a small inversion loss must be local
optimals.

We evaluate our technique on backdoor detection using 1584
transformer models from TrojAI (IARPA, 2020) rounds
6-8 datasets and 120 models from 3 advanced stealthy
NLP backdoor attacks. Our method consistently outper-
forms 4 stat-of-the-art baselines, ASCC (Dong et al., 2021),
UAT (Wallace et al., 2019), T-Miner (Azizi et al., 2021)
and Genetic Algorithm (Alzantot et al., 2018), having up to
23.0%, 12.2%, 43.4% and 27.8% higher detection accuracy,

respectively. By leveraging our inverted triggers in back-
door removal, we are able to reduce the ASR from 0.987 to
0.058. We will release the code upon publication.

2. Related Work
A large body of works have been proposed for backdoor
attack and defense. Early works mainly focus on the com-
puter vision domain (Liu et al., 2017; Gu et al., 2017; Chen
et al., 2017; Liu et al., 2020; Salem et al., 2020; Wang et al.,
2019; Liu et al., 2019a; Shen et al., 2021a; Xu et al., 2019).
Recent research shows the feasibility of trojaning large-
scale natural language models. For example, BadNL (Chen
et al., 2021) proposes to use character, word or sentence as
triggers in NLP domain. Hidden Killer Attack (Qi et al.,
2021a) uses a specific sentence structure as the backdoor
trigger. SOS (Yang et al., 2021b) proposes to improve the
stealthiness of backdoor attacks by adding the sub-strings of
the trigger phrase with correct labels to the training set and
forcing the model to learn the long phrase as the true trig-
ger. Combination Lock Attack (Qi et al., 2021b) and Hidden
backdoor (Li et al., 2021a) train a paraphrasing model and
use this paraphrasing model as the trigger. There is another
line of works that focuses on poisoning pre-trained mod-
els in NLP domain (Kurita et al., 2020; Shen et al., 2021b;
Zhang et al., 2021). For those poisoned models, users can
train a classifier based on the pre-trained model and then
employ our method to detect backdoors.

Backdoor detection for NLP models is a new area. It falls
into two categories. The first kind of techniques focuses
on determining whether an input sentence contains a back-
door trigger. Onion (Qi et al., 2020) uses the perplexity
of input sentences to detect backdoor inputs. Pruthi et
al. (Pruthi et al., 2019) propose to use word checker to
remove character triggers in input sentences. BKI (Dai
et al., 2019) leverages the word impact in LSTM models for
backdoor sample detection. The second kind aims to deter-
mine whether a NLP model contains backdoors without the
access to sentences with triggers. Our method falls in this
category. MNTD (Xu et al., 2019) utilizes meta-learning to
train a large set of shadow models for backdoor detection.
MNTD mainly targets models in the computer vision do-
main and was only evaluated on one-layer LSTM models in
NLP domain. T-miner (Azizi et al., 2021) trains a sequence-
to-sequence generative model to reverse-engineer backdoor
triggers. It then uses the attack success rate of generated
triggers to determine whether a model contains backdoors.
T-miner uses random samples to train the generative model
and does not require benign sentences. A few adversarial
example generation methods in NLP domain (Alzantot et al.,
2018; Wallace et al., 2019; Dong et al., 2021) aim to gener-
ate a small perturbation to induce misclassification. They
can be adapted to reverse-engineer triggers for backdoor
detection. We evaluate on two state-of-the-art adversarial

Constrained Optimization with Dynamic Bound-scaling for Effective NLP Backdoor Defense

generation methods, ASCC (Dong et al., 2021) and Genetic
Algorithm (GA) (Alzantot et al., 2018), in Section 5.

3. Preliminaries
In this section, we formally define NLP backdoor attack and
defense.

3.1. NLP Backdoor Attack

For the notation simplicity, we consider a textual classifica-
tion task. Given a transformer model f(θ) parameterized by
θ and a clean dataset D = {X ,Y}, where x = {xi}ni=1 ∈
X is a text sequence with n tokens, y ∈ Y is the corre-
sponding label, An NLP backdoor attack aims to train a
model f(θ∗) associated with a secret m tokens sequence
t∗ = {t∗i }mi=1 (i.e., the trigger) and a target label y∗ ∈ Y . It
first constructs a poisoned dataset Dp = {D ∪ D∗}, where
D∗ = {X ∗, y∗}, x∗ = {xi}ni=1 ⊕ {t∗i }mi=1 ∈ X ∗, and then
minimizes the following training loss.

LDp(θ
∗) = E

(x,y)∼D
L(f(x; θ∗), y)

+ E
(x∗,y∗)∼D∗

L(f(x∗; θ∗), y∗)
(1)

where l(·, ·) is the cross entropy loss and ⊕ denotes the
trigger injection operation, which could be insertion and
replacement at various positions (Chen et al., 2021; Dai
et al., 2019). The attackers usually set m ≪ n for the pur-
pose of stealthiness (Kurita et al., 2020; Yang et al., 2021a).
Note that Eq. 1 is a general definition for the training objec-
tive of backdoor attacks, which is widely used in existing
works (Gu et al., 2017; Liu et al., 2017)

3.2. NLP Backdoor Defense

Threat Model. Similar to (Azizi et al., 2021; Shen et al.,
2021a; Liu et al., 2019a; Wang et al., 2019), we assume that
the defender gains the full access to a subject model f(θ),
which may be trojaned or clean, and a small subset of the
clean dataset D′ ∈ D. The defender has no knowledge of the
injected trigger t∗, target label y∗ or the poisoned dataset D∗,
if the model is trojaned. We consider two types of defense.
The first is to determine if the subject model contains any
backdoor. The second is to remove the backdoor if there
is one. Therefore, runtime backdoor sample detection (Qi
et al., 2020; Fan et al., 2021; Pruthi et al., 2019) that aims to
determine if an input sample contains any backdoor trigger
is beyond our scope (as it requires poisoned samples).

3.2.1. TRIGGER INVERSION

Trigger inversion (Liu et al., 2019a; Wang et al., 2019; Shen
et al., 2021a; Wang et al., 2020) aims to reverse engineer the
injected trigger and the corresponding target label through
optimization. Specifically, given a subject model, it treats
each label a potential target label (of an attack) and tries to

derive a token sequence which is able to flip all samples to
the target class. Since the procedure may identify a num-
ber of such trigger and target label pairs, it usually reports
the most prominent pair based on certain metrics (e.g., the
smallest trigger with the highest ASR). Mathematically, for
each label yi ∈ Y , it tries to find a t[yi] to minimize the loss:

Linv(t
[yi], yi, θ

∗) = E
x∼D′

L(f(x⊕ t[yi]; θ∗), yi) (2)

Observe that by iterating over all possible labels, the above
procedure always produces a set of inversed triggers, one
for each label. To determine if a model has any backdoor,
we propose the following assumption.

Assumption I: Given a trojaned model f(θ∗) with target
label y∗, Linv(t

[yi], yi, θ
∗) ≪ Linv(t

[yj], yj , θ
∗),∀yj ̸=

yi ∈ Y if yi = y∗.

Intuitively, it is easier to flip samples to the ground-truth
target label than to other labels for a trojaned model. We
use (t̂, ŷ) = argminLinv(t

[yi], yi, θ
∗),∀yi ∈ Y to denote

the optimal trigger estimation for a model f .

3.2.2. BACKDOOR DETECTION

Backdoor detection aims to determine if a given NLP model
has a backdoor. It can be defined as a binary classification
task over a set of benign and trojaned models. In particular,
given a model set {(f(θk),D′

k, ωk)}Nk=1, a backdoor detec-
tion algorithm tries to derive a binary function F so that

F(θk,D′
k) = ωk,∀k ∈ N (3)

where ωk ∈ {0, 1} denotes the benignity of model k. Here,
we have an assumption regarding models.

Assumption II: Assume (t̂t, ŷt) and (t̂b, ŷb) denote the
optimal trigger estimations for a trojaned model ft and a
benign model fb, respectively, we have Linv(t̂t, ŷt, θt) ≪
Linv(t̂b, ŷb, θb).

Intuitively, due to the existence of backdoor, it is easier
to find a token sequence that can flip a trojaned model’s
prediction than a benign model. Based on the assumption, a
straightforward way to realize the detection function is the
following.

F(θk,D′
k) =

{
1, Linv(t̂k, ŷk, θk) < β

0, Linv(t̂k, ŷk, θk) > β
(4)

where β is a learnable threshold to distinguish benign and
trojaned models. Note that more complex methods to con-
struct the detection function are possible such as supervised
training based on logits and/or model internals. In this paper,
we find that the simple threshold based method is sufficient.

Constrained Optimization with Dynamic Bound-scaling for Effective NLP Backdoor Defense

3.2.3. BACKDOOR REMOVAL

Backdoor removal aims to eliminate an identified backdoor
without hurting the model’s clean accuracy. A standard
way is to perform model unlearning(Wang et al., 2019).
Particularly, it optimizes Eq.1 inversely as follows.

argmin
θ∗

[E
(x,y)∼D

L(f(x; θ∗), y)

− E
(x∗,y∗)∼D∗

L(f(x∗; θ∗), y∗)]
(5)

In practice, we approximate the unknown (t∗, y∗) by the
inversion results (t̂, ŷ), and Eq.5 can be rewritten as

argmin
θ∗

E
(x,y)∼D′

[L(f(x; θ∗), y)− L(f(x⊕ t̂; θ∗), ŷ)]

(6)
Therefore, the accurate estimation of (t̂, ŷ) is crucial for
both backdoor removal and detection tasks.

4. Methodology
In this section, we first introduce the challenges in applying
trigger inversion for backdoor defense and then present our
method.

As a standard procedure, modern transformer models have
an input embedding function e(·) to map an input token
sequence to a lower dimensional embedding vector, and
then feed the embeddings forward through the network. The
trigger inversion process can be revised as follows with e(x)
the embeddings of an input x.

argmin
t

Linv = E
x∼D

L(f(e(x), e(t); θ), y) (7)

Note that Eq.7 is not end-to-end differentiable for two rea-
sons. First, the optimization variable t is defined on a dis-
crete space Nm×p

+ , where m is the trigger length and p is
the entire dictionary size (e.g., 30522 for BERT). Second,
gradient will be cut while propagating through the input
embedding layer since it is a table lookup operation (Turian
et al., 2010; Peters et al., 2017; Gardner et al., 2018).

4.1. Defining A Convex Hull for the Input Space

In order to address the non-differentiability issue, we per-
form a linear relaxation of the discrete input space by defin-
ing a convex hull.

Proposition I: Let C = {c1, c2, · · · , cp} be the set of all
possible tokens in dictionary. The convex hull over input
space can be defined as V = {

∑p
j=1 αje(cj) |

∑p
j=1 αj =

1, αj ≥ 0}

Therefore, an arbitrary input token ti can be represented
in the convex hull: V(ti) =

∑p
j=1 αije(cj) where∑p

j=1 αij = 1, αij ≥ 0. Similar to (Dong et al., 2021),
by introducing wij ∈ Rm×p and leveraging softmax , we
can satisfy the coefficient constraint by the following trans-

formation.

αij =
exp (wij)∑p
j=1 exp (wij)

(8)

After defining the convex hull over input space, we can
avoid directly optimizing tokens in the trigger sequence,
but rather optimizing the coefficients wij . For example,
backdoor detection is to solve the following optimization
problem.

argmin
αij

E
x∼D

L(f(e(x), {
p∑

j=1

αije(cj)}mi=1; θ), y) (9)

In the NLP adversarial example generation technique
ASCC (Dong et al., 2021), for each token in the input,
they have a small substitute token list, and then define a
convex hull over such list. The optimization hence looks
for a value in the convex hull (a linear combination of the
substitute tokens) that can induced misclassification. The
substitute list is small for each token (in the scale of 10). In
contrast, we consider all possible tokens (more than 30000)
in our convex hull as the trigger can be any token and all
tokens share the same convex hull. This makes optimization
substantially more challenging and motivates our unique
design.

4.2. Gradual Focusing with Temperature Scaling and
Backtracking

Directly solving Eq. 9 produces excessive false results,
namely, unrealistic vectors (in the hull) that do not cor-
respond to any legitimate tokens in the dictionary. For
example, it may yield a vector with all the αij having some
small values. While the vector can incur a very small loss
value, it does not constitute any valid token. This is because
NLP models are only trained on a limited set of vectors
(from valid tokens) and their behaviors in the whole input
space are largely undefined. While this is not a problem for
forward computation, it makes inversion extremely difficult.

Figure 2 (a) shows an example contour of loss landscape
when we directly optimize Eq. 9. A point denotes an α
vector value (after dimension reduction), and its color de-
notes the loss value for the point. The brighter the color, the
smaller the loss. Therefore, the white points denote global
optimals. The points brighter than their surroundings and
do not have a white color denote local optimals.

Here, point J corresponds to the ground truth trigger token.
Note that its α vector is a one-hot value, with the dimension
corresponding to the token having value 1 and the rest 0.
Due to the undefined behaviors, all the points in a large
surrounding area of J also yield a comparable small loss.
As such, the optimization produces many false results.

Ideally, we would want the optimization to produce a one-
hot value. This can be achieved by controlling the tempera-

Constrained Optimization with Dynamic Bound-scaling for Effective NLP Backdoor Defense

(a) High temperature (b) Moderate temperature (c) Low temperature

Figure 2: Illustration of Temperature Scaling and Backtracking in Different Loss Landscapes

ture in the softmax function.

αij =
exp (wij/λ)∑p
j=1 exp (wij/λ)

(10)

Specifically, coefficient λ in Eq. 10 controls result confi-
dence, with a default value 1. When it is large (λ ≫ 1),
called high temperature, all the dimensions in the optimiza-
tion result tend to have small differences, indicating low
confidence. When it is small (λ ≪ 1), called low tempera-
ture, one of the dimentions tends to substantially stand out
(similar to a one-hot value). Intuitively, this is because a low
temperature enlarges the numerical difference among di-
mensions and after going through softmax , such difference
is further magnified due to its exponential nature. As such,
the value of top-1 dimension becomes exponentially larger
than the others. Therefore, a naive idea is to use a very low
temperature in optimization. However, this is problematic
because the loss landscape becomes rougher with a lower
temperature and hence the optimization tends to produce
local optimals, e.g., one-hot values whose loss values are
large, meaning valid tokens failing to incur high ASR.

Figure 2 (c) shows the loss landscape when we use a low
temperature. Observe that while J remains a global optimal,
there are many other optimals, including global and local.
They largely correspond to valid tokens but most of them
do not have a small loss value. Direct optimization in such
a landscape is not effective either.

Our Solution. We make a key observation that the ground
truth (GT) token remains a global optimal for all possible
temperatures (e.g., point J). When the temperature is high,
the landscape is smooth and a large surrounding area of
the GT point has a small loss value. We call it the optimal
zone (OZ). With temperature decreasing, OZ also decreases
while still including the GT. Given a specific temperature,
the optimization may yield any point in the corresponding
OZ. Our overarching idea is hence to iteratively perform
Temperature Scaling and Backtracking.

Temperature Scaling: We start with a high temperature (and

hence a smooth landscape and a large OZ), e.g., Figure 2
(a). Assume the optimization yields some point in the OZ,
e.g., H in Figure 2 (a). We then lower the temperature and
resume optimization from H , which essentially means that
we are using a landscape that is more focused and has a
smaller OZ, e.g., Figure 2 (b). This time, the optimization
yields a point in the smaller OZ, e.g., I in (b). According to
our observation, all the OZ’s include the GT. By gradually
decreasing the temperature, we guide the optimization to
become more and more focused, until the GT is found, i.e.,
point J in Figure 2 (c).

Backtracking: However in practice, given a specific tem-
perature, the optimization may not yield a point in the OZ,
but rather a local optimal. We call the surrounding area
of the local optimal with a comparable loss value a false
zone (FZ). Since FZ does not include the GT, further search
with decreasing temperatures must yield false results. We
observe that while deciding if an optimization result is a
global optimal is impossible in general optimization, in
our context (of backdoor defense), the problem is indeed
tractable. According to Eq. 1, the GT must have a very
small loss regardless of the temperature. Therefore, first,
we do not start reducing the temperature if the current result
does not even have a small loss; second, even after we start
to reduce the temperature, if we cannot achieve a small loss
at a reduced temperature, we will first randomize the search,
hoping to refocus to the OZ. If even the randomization does
not yield a small loss, we backtrack to a previous (higher)
temperature and resume search in a smoother space. The
backtracking could be multi-step.

Example. We use an example in Figure 2 to illustrate our
optimization. Assume the initial data point is A in figure
(a) (with J the GT). The high temperature optimization in
(a) yields B which is a local optimal. However, its loss
is very small (see its white color), comparable to the loss
of the GT. Such a small loss grants temperature reduction
and hence the search continues in the landscape in figure
(b) (with a moderate temperature). It further narrows down

Constrained Optimization with Dynamic Bound-scaling for Effective NLP Backdoor Defense

to C. Observe the zone of C is white, denoting small loss
values, and is part of the zone of B in (a). The temperature
further decreases and the search becomes in the landscape
(c). It yields point D, which is a one-hot value but has a
large loss (see its blueish color). The process backtracks to
the previous temperature. With randomization, the search
in (b) resumes from point E. The dashed edge from D to E
denotes a random offsetting operation. It then reaches F in
(b) and then G in (c), which has a large loss as well. This
time, our algorithm backtracks two steps as the last one-step
backtrack yields a false result. Therefore, the search roll-
backs to the landscape in (a). With the random offset (from
G to H), the search is on track to reach the GT through the
path H → I → J .

Our method can be formally defined as a constrained opti-
mization problem:

min λ, s.t. Linv < β′ (11)
where λ the temperature coefficient in Eq. 10 and β′ con-
trols the loss boundary to allow temperature drop. At the
beginning, λ is high, the optimization is able to quickly
converge to a loss value smaller than β′. As λ decreases, the
landscape becomes rougher and the optimization becomes
more difficult, then the loss may start increasing and λ may
be backtracked.

The method is formally defined in Alg. 1. Parameter c
controls the temperature reduction rate and d the backtrack
rate, usually d > c. In this paper, we use d = 5 and
c = 2. We set the temperature upper bound u = 2 to avoid
it grows too large. Parameter ϵ controls the random offset.
Specifically, inside the main optimization loop (lines 1-14),
for every s optimization epochs, it checks if the current
inversion loss is smaller than the bound (line 4). If so, the
temperature is reduced (line 5). Otherwise, it backtracks
(line 7) and applies random noise ϵ ∼ N (0, δ) to wij with
δ = 10 (line 8). Note that if the loss fails to go below β′

after s epochs, the algorithm will backtrack more.

Note that related ideas have been explored in general opti-
mization. (Mendivil et al., 2001) describes a general strategy
in applying heuristic-based search methods to solve com-
binatorial optimization problems. It states that restarting
search yields a higher convergence rate under certain con-
ditions. Although the concept is similar, our method is
substantially different. First of all, our method is tailored
for NLP backdoor detection. The proposed method is based
on a series of unique observations regarding the backdoor
behaviors of poisoned models. Second, our method is a
gradient-based search method, which approximates the non-
differential objective by constructing input space convex
hulls. Third, instead of restarting the entire search, our
method is more moderate and uses backtracking. It back-
tracks to the latest temperature which meets the loss criteria
when encountering local optimals. Introducing randomness

Algorithm 1 Dynamic Bound-scaling (DBS)
Input: dataset D′, target label y, params: c, d, u, ϵ, β′

Output: invsered trigger α∗
ij

1: repeat
2: Optimizing Eq.9
3: for every s epochs do
4: if Linv < β′ then
5: Temperature Focusing: λ = λ/c
6: else
7: Backtracking: λ = min(λ ∗ d, u)
8: Randomization: wij = wij+ϵ, ϵ ∼ N (0, δ)
9: end if

10: end for
11: if maxαj = 1,∀i ∈ m and Linv < β′ then
12: update best trigger: α∗

ij = αij

13: end if
14: until max epochs

Figure 3: Loss Comparison On A Trojaned Model (TrojAI
#R8-Test-ID-216)
during backtracking is also unique.

5. Evaluation
5.1. Experimental Setup

Tasks and Evaluation Models. We evaluate our method
on 3 popular NLP tasks: Sentiment Analysis (SA) (Socher
et al., 2013), Name Entity Recognition (NER) (Sang &
De Meulder, 2003; Melamud et al., 2016) and Question
Answering (QA) (Rajpurkar et al., 2016). We consider
the 548 SA transformer models from the TrojAI compe-
tition (IARPA, 2020) round 5, including 48 models from
the training set and 480 models from the test set. Please
see details in Appendix A. For each task, we leverage one
fourth of the models in training set to derive the optimal
threshold β in Eq. 4. For the (time-consuming) backdoor re-
moval experiment, we randomly sample 20 trojaned models
from each round to evaluate our method. Since our method
does not require training, we use both the training and test
datasets in evaluation.

Attack Setting. Standard Data Poisoning (SDP) (Gu et al.,
2017) is used for generating trojaned models in the TrojAI
datasets. In particular, 9 poisoning configurations are used
for the different tasks. Detailed settings can be found in
Appendix A. In addition, we also evaluate on the following
3 advanced NLP backdoor attacks. Hidden Killer Attack (Qi

Constrained Optimization with Dynamic Bound-scaling for Effective NLP Backdoor Defense

Table 1: Backdoor Detection Evaluation Results on TrojAI Datasets

Task Evaluation Set
Ours ASCC UAT T-miner GA ASC

Acc Time(s) Acc Time(s) Acc Time(s) Acc Time(s) Acc Time(s) Acc Time(s)

SA R6 Train 0.958 200 0.833 199 0.868 256 0.500 3075 0.848 1666 0.850 272

R6 Test 0.954 202 0.766 209 0.854 251 0.520 3076 0.798 1736 0.842 285

NER R7 Train 0.917 580 0.738 655 0.889 714 - - 0.700 3675 0.775 785

R7 Test 0.916 599 0.686 640 0.897 718 - - 0.638 3720 0.692 789

QA R8 Train 0.975 530 0.808 506 0.892 615 - - 0.767 4281 0.825 669

R8 Test 0.905 532 0.695 563 0.783 613 - - 0.667 4310 0.726 702

(a) Continuous Optimization
with No Constraint

(b) ASCC (c) UAT (d) Ours

Figure 4: Loss Comparison on Trojan/Benign model

et al., 2021a) proposes to use syntactic structure as trigger
to achieve stealthiness. Combination Lock Attack (Qi et al.,
2021b) rephrases sentences by substituting a set of words
with their synonyms and considers the substitution behaviors
as the trigger. SOS Attack (Yang et al., 2021b) constructs a
poisonous dataset by data augmentation to ensure the trigger
sequence is only effective when all tokens appear in the
input sentence. For each attack, we use 20 trojaned and 20
benign models. Specifically, hidden killer and combination
lock models are trained on the SST-2 dataset with shared
benign models (Socher et al., 2013), and the SOS models
are trained on the IMDB movie review dataset (Maas et al.,
2011a). All codes are from original Github repos.

Defense Setting. For backdoor detection, we use 20 samples
in scanning, meaning that the trigger ought to flip major-
ity of these samples. We invert a fixed number of tokens
for all the attacks (10 in this paper). For the attacks which
use longer triggers, we found that a subset of the ground-
truth trigger tokens can already have a high Attack Success
Rate, exposing the backdoors. Similar phenomenon is also
reported in the literature (Yang et al., 2021b). For TrojAI
models, we assume that defenders are not aware of the attack
settings beforehand. Therefore, we need to enumerate all
possible settings while launching our inversion method. For
example, in TrojAI round7, there are 9 trigger types based
on its positions, target label, etc. We try all possible combi-
nations and consider a model trojaned if any combination
yields a high ASR. We apply the same rule when evaluating
all baselines. The time cost reported in the main text Table
1 is the aggregated time (of all combinations). For backdoor
removal, we randomly select 20 trojaned models from the
TrojAI training set in each round and first run our method to
invert triggers. For the three advanced NLP attacks, we train

20 trojaned models per attack with different random seeds.
We optimize the Eq.6 to unlearn the backdoors. Please see
more details in Appendix A.

Baselines. We compare our method with 5 baselines for the
backdoor detection task: Adversarial Sparse Convex Com-
bination (ASCC) (Dong et al., 2021), Genetic Algorithm
(GA) (Alzantot et al., 2018), Universal Adversarial Trigger
(UAT) (Wallace et al., 2019), T-Miner (Azizi et al., 2021)
and Adversarial Semantic Collisions (ASC) (Song et al.,
2020). ASCC (Dong et al., 2021) is the most relevant tech-
nique to ours. It was proposed to generate NLP adversarial
examples for adversarial training. For each word in the sen-
tence, ASCC defines a convex hull over a small synonym list
(less than 20) and uses gradient-based optimization to derive
the word change. It also introduces a regularization item in
the optimization objective to encourage the solution to be
sparse. ASC (Song et al., 2020) is a gradient based method
for generating Semantic Collisions:texts that are semanti-
cally unrelated but judged as similar by NLP models. It
relaxes the discrete input space to a continuous one through
Softmax function, then it leverages beam search to pick the
token sequence. Similarly, UAT (Wallace et al., 2019) is
also a gradient based inversion technique designed for gen-
erating backdoor triggers. To avoid the non-differentiable
pipeline issue, UAT is applied on the embedding space. For
each step, it generates an embedding vector for each token
through back-propagation, then it projects the embedding
to the most similar word embedding defined in the dictio-
nary. GA (Alzantot et al., 2018) is a heuristic method, by
defining the population (all possible token sequence with
a fixed length), the instance and the score function (Attack
Success Rate). GA tends to remain the instance with higher
ASR for the next generation. T-Miner (Azizi et al., 2021)

Constrained Optimization with Dynamic Bound-scaling for Effective NLP Backdoor Defense

is a model based trigger inversion technique. It leverages a
sequence-to-sequence model to produce misclassified sam-
ples, then it analyzes the text produced by the generative
model to determine if they contain trigger phrases. Their
settings can be found in Appendix A.

5.2. Main Results

Backdoor Detection. We show the results on the 1548
TrojAI models in Table 1. The first and second columns
indicate the tasks and the corresponding evaluation set. In
columns 3-14, every two columns show the detection ac-
curacy and the time cost for a method. As shown in the
third and fourth columns, our method is able to achieve over
90% detection accuracy cross all tasks and outperforms all
the baselines. For example, in the SA task, our method
can achieve 0.958 and 0.954 on round 6 training and test
sets, respectively. In contrast, the other three optimization
based methods, ASCC, UAT and ASC, can only achieve
0.833/0.766/, 0.868/0.854 and 0.850/0.842, respectively. T-
Miner achieves 0.5 and 0.52 on the round 6 training and
test sets. Note that T-miner is a generator based detection
method and may not scale well to large transformer models.
GA can get 0.848 and 0.798 accuracy on round 6 which
are comparable to ASCC. For the round 7 NER task, we
find that UAT is more effective than other baselines, it can
achieve 0.897 on the test set, which is 21.1% better than
ASCC, 20.5% better than ASC and 25.9% better than GA.
However, our method is still 1.9% better. For the QA task,
which is most challenging, our method has 0.905 accuracy
on the test set, which is 21%, 12.2% 17.9% and 23.8% bet-
ter than ASCC, UAT, ASC and GA, respectively. The time
cost of our method is similar to the other three optimization
methods due to the same setting, UAT is slightly slower
than the other ours due to its projection operation in each
step. The efficiency degradation for ASC is due to the beam
search after optimization. T-Miner and GA are more costly.
In particular, T-Miner takes 14× more computation time
for the round 6 SA models when compared to our method.
It is because T-Miner fine-tunes a generator model when
scanning each subject model. Our method is 8.6×, 6.21×
and 8.1× faster than GA in the SA, NER and QA tasks.

Fig. 3 and Fig. 4 further explain the effectiveness of our
method compared to the baselines. Fig. 3 illustrates the loss
value changes over the optimization epochs for different
methods on a trojaned QA model from TrojAI round 8. The
green line is for ASCC. As illustrated in the methodology
section, it quickly falls into a large false zone (FZ), then the
entropy regularization item forces the optimizer to find a
one-hot value in the FZ. The value yields a large loss since
it is not the ground truth (GT). The blue line is for UAT,
it leverages first-order Taylor-approximation to derive the
gradient direction of the current optimization variable and
directly projects it to the discrete input space. In other words,

Table 2: Backdoor Removal Results on TrojAI Datasets

Task
Before Removal After Removal

Clean Acc ASR Clean Acc ASR

SA 0.909 0.980 0.892 0.051

NER 0.978 0.957 0.959 0.032

QA 0.727 0.998 0.720 0.091

Table 3: Backdoor Removal Results on Advanced attacks

Attack
Before Removal After Removal

Clean Acc ASR Clean Acc ASR

Hidden Killer 0.901 0.978 0.899 0.095

Combinational Lock 0.924 0.958 0.926 0.072

SOS 0.912 0.922 0.907 0.256

every point in the curve represents the loss of a one-hot token
sequence. However, due to the rugged loss landscape, such
local approximation might yield a wrong gradient direction,
leading to the fluctuating curve and sub-optimal results. The
red line is for our method. In the early epochs, it also falls
in some FZ as ASCC does. Later, due to backtracking and
randomization, it escapes the FZ’s, reaches an optimal zone
(OZ), and finally inverts the GT. Fig. 4 further compares
the loss values between a trojaned and a benign SA models
from TrojAI round 6 for each method. Due to the existence
of FZ’s, directly optimizing in the continuous space (with
the default temperature) yields extremely small loss values
for both trojaned and benign models as shown in Fig. 4(a),
leading to a large number of false positives in scanning.
Fig. 4(b) and 4(c) illustrate the differences for ASCC and
UAT, respectively. Observe that due to the ineffective search
of the GT in these methods, the trojaned model’s loss is not
distinguishable from the benign model’s, leading to false
negatives. In contrast, our method is able to achieve a clear
separation between the benign and trojaned models as in
Fig. 4(d).

We evaluate our method on the 3 advanced NLP backdoor
attacks. The results are in Fig. 5. In each subplot, we
present the loss values of optimal trigger estimations by
our method for individual models. The red cycles and blue
boxes represent trojaned and benign models, respectively.
As in Fig. 5(a) and Fig. 5(b), there are clear separations
between trojaned and benign models for Hidden Killer and
Combination Lock attacks. In particular, if we set β = 0.3,
we are able to achieve 0.95 and 1.00 detection accuracy
for the two attacks. The SOS attack can be considered an
adaptive attack for our method. It substantially reduces the
size of OZ via adversarial data augmentation, which makes
it difficult for the optimizer to find the GT. As shown in
Fig. 5(c), although the red and blue separation becomes
much smaller than the other two attacks, we are still able to
get 0.875 if we set the β = 1.

Backdoor Removal. We show the backdoor removal results
on 60 randomly selected models for the 3 NLP tasks across

Constrained Optimization with Dynamic Bound-scaling for Effective NLP Backdoor Defense

(a) Hidden Killer Attack (b) Combinational Lock Attack (c) SOS Attack

Figure 5: Evaluation on Advanced NLP Backdoor Attacks
Table 4: Adaptive Attack

Parameter
SA NER QA

Acc ASR Acc ASR Acc ASR

ϕ = 0 0.950 0.991 0.900 0.941 0.900 0.999
ϕ = 0.1 0.900 0.959 0.900 0.942 0.900 0.962
ϕ = 0.5 0.850 0.853 0.850 0.812 0.800 0.794
ϕ = 1 0.650 0.531 0.550 0.448 0.600 0.428

3 TrojAI rounds (20 for each round) in Table2. The first
column presents the task. The second and third columns
show the trojaned models’ clean accuracy and attack success
rate (ASR) on the test set before removal. The fourth and
fifth columns show the average clean accuracy and ASR
after removal. Observe that for all tasks, our method is able
to reduce the ASR down to less than 10% with slight clean
accuracy degradation. We further evaluate our removal
method on the three advanced NLP backdoor attacks, using
20 trojaned models per attack. The results are shown in
Table. 3. For all the attacks, our method can largely retain
the clean accuracy. For Hidden Killer and Combinational
Lock, our method can reduce the ASR to 0.072. For SOS,
the most robust attack, our method can still reduce the ASR
from 0.922 to 0.256.

Note that there are a number of highly effective backdoor
removal methods in the visiom domain (Wang et al., 2019;
Wu & Wang, 2021; Li et al., 2021b; Tao et al., 2022; Liu
et al., 2018). These techniques cannot be easily adapted to
the NLP domain which has different characteristics, such as
sparse space, discrete pipeline, and sequential input.

5.2.1. ABLATION STUDY

We study the contributions of our design choices on a subset
of TrojAI models, with 20 trojaned and 20 benign for each
task. The results show that the optimization has low preci-
sion scores without temperature scaling/reduction and low
recall scores without backtracking. It renders the importance
of both design choices. Please see details in Appendix B.

5.2.2. ADAPTIVE ATTACK

Besides the SOS attack, we devise another adaptive attack
which is targeting our Assumption II. The idea is to encour-
age samples stamped with triggers not to have a extremely
small loss. In particular, we revise the target loss in Eq.1 as

follows.
LDp(θ

∗) = E
(x,y)∼D

L(f(x; θ∗), y)

+ E
(x∗,y∗)∼D∗

max(L(f(x∗; θ∗), y∗)− ϕ, 0)

(12)
where ϕ is a hyper-parameter to control the trigger loss dur-
ing poisoning. For different ϕ values, we train 10 trojaned
models and mixed them with the same number of benign
models for each task. According to Table 4, our method
stays effective when ϕ = 0.5, the detection accuracy is over
80% for all tasks. As ϕ further increases, the method be-
comes less effective. However, the ASR drops a lot as well,
which means the attack is not effective anymore. Intuitively,
the ASR is entangled with the training loss. Therefore, it’s
difficult for attackers to achieve both high ASR and moder-
ate loss value to bypass our method.

6. Conclusions
We present a novel optimization method for NLP model
backdoor defense. It reduces the trigger inversion prob-
lem to inverting weight value vectors for all tokens in the
dictionary. It then dynamically scales the temperature in
the softmax function to gradually narrow down the search
space for the optimizer, helping it to produce a close-to
one-hot inversion result with high ASR. The one-hot value
hence corresponds to the ground truth trigger. It also utilizes
temperature backtracking to escape local optimals. Our
experiments show that the method is highly effective and
produces better backdoor scanning and removal results than
the baselines.

7. Acknowledgment
We thank the anonymous reviewers for their construc-
tive comments. This research was supported, in part by
IARPA TrojAI W911NF-19-S-0012, NSF 1901242 and
1910300, ONR N000141712045, N000141410468 and
N000141712947. Any opinions, findings, and conclusions
in this paper are those of the authors only and do not neces-
sarily reflect the views of our sponsors.

Constrained Optimization with Dynamic Bound-scaling for Effective NLP Backdoor Defense

References
Alzantot, M., Sharma, Y., Elgohary, A., Ho, B.-J., Srivas-

tava, M., and Chang, K.-W. Generating natural language
adversarial examples. arXiv preprint arXiv:1804.07998,
2018.

Azizi, A., Tahmid, I. A., Waheed, A., Mangaokar, N., Pu, J.,
Javed, M., Reddy, C. K., and Viswanath, B. T-miner: A
generative approach to defend against trojan attacks on
dnn-based text classification. In 30th {USENIX} Security
Symposium ({USENIX} Security 21), 2021.

Bjerva, J., Bhutani, N., Golahn, B., Tan, W.-C., and Augen-
stein, I. Subjqa: A dataset for subjectivity and review
comprehension. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, 2020.

Chen, C. and Dai, J. Mitigating backdoor attacks in lstm-
based text classification systems by backdoor keyword
identification. Neurocomputing, 452:253–262, 2021.

Chen, X., Liu, C., Li, B., Lu, K., and Song, D. Targeted
backdoor attacks on deep learning systems using data
poisoning. arXiv preprint arXiv:1712.05526, 2017.

Chen, X., Salem, A., Chen, D., Backes, M., Ma, S., Shen, Q.,
Wu, Z., and Zhang, Y. Badnl: Backdoor attacks against
nlp models with semantic-preserving improvements. In
Annual Computer Security Applications Conference, pp.
554–569, 2021.

Clark, K., Luong, M.-T., Le, Q. V., and Manning, C. D.
ELECTRA: Pre-training text encoders as discriminators
rather than generators. In ICLR, 2020. URL https:
//openreview.net/pdf?id=r1xMH1BtvB.

Dai, J., Chen, C., and Li, Y. A backdoor attack against
lstm-based text classification systems. IEEE Access, 7:
138872–138878, 2019.

deepset. Deepset roberta.
https://huggingface.co/deepset/roberta-base-squad2/,
2020.

Devlin, J., Chang, M., Lee, K., and Toutanova, K. BERT:
pre-training of deep bidirectional transformers for lan-
guage understanding. CoRR, abs/1810.04805, 2018a.
URL http://arxiv.org/abs/1810.04805.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018b.

Dong, X., Luu, A. T., Ji, R., and Liu, H. Towards robust-
ness against natural language word substitutions. arXiv
preprint arXiv:2107.13541, 2021.

Fan, M., Si, Z., Xie, X., Liu, Y., and Liu, T. Text backdoor
detection using an interpretable rnn abstract model. IEEE
Transactions on Information Forensics and Security, 16:
4117–4132, 2021. doi: 10.1109/TIFS.2021.3103064.

Gardner, M., Grus, J., Neumann, M., Tafjord, O., Dasigi,
P., Liu, N., Peters, M., Schmitz, M., and Zettlemoyer, L.
Allennlp: A deep semantic natural language processing
platform. arXiv preprint arXiv:1803.07640, 2018.

Gu, T., Dolan-Gavitt, B., and Garg, S. Badnets: Identify-
ing vulnerabilities in the machine learning model supply
chain. arXiv preprint arXiv:1708.06733, 2017.

Hovy, E., Marcus, M., Palmer, M., Ramshaw, L., and
Weischedel, R. OntoNotes: The 90% solution. In
Proceedings of the Human Language Technology Con-
ference of the NAACL, Companion Volume: Short Pa-
pers, pp. 57–60, New York City, USA, June 2006. As-
sociation for Computational Linguistics. URL https:
//www.aclweb.org/anthology/N06-2015.

IARPA. Trojai competition. https://pages.nist.gov/trojai/,
2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kurita, K., Michel, P., and Neubig, G. Weight poi-
soning attacks on pre-trained models. arXiv preprint
arXiv:2004.06660, 2020.

Li, S., Liu, H., Dong, T., Zhao, B. Z. H., Xue, M., Zhu, H.,
and Lu, J. Hidden backdoors in human-centric language
models. arXiv preprint arXiv:2105.00164, 2021a.

Li, Y., Koren, N., Lyu, L., Lyu, X., Li, B., and Ma, X.
Neural attention distillation: Erasing backdoor triggers
from deep neural networks. In ICLR, 2021b.

Liu, K., Dolan-Gavitt, B., and Garg, S. Fine-pruning: De-
fending against backdooring attacks on deep neural net-
works. In International Symposium on Research in At-
tacks, Intrusions, and Defenses, pp. 273–294. Springer,
2018.

Liu, Y., Ma, S., Aafer, Y., Lee, W.-C., Zhai, J., Wang, W.,
and Zhang, X. Trojaning attack on neural networks. 2017.

Liu, Y., Lee, W.-C., Tao, G., Ma, S., Aafer, Y., and Zhang,
X. Abs: Scanning neural networks for back-doors by arti-
ficial brain stimulation. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications
Security, pp. 1265–1282, 2019a.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy,
O., Lewis, M., Zettlemoyer, L., and Stoyanov, V. Roberta:
A robustly optimized BERT pretraining approach. CoRR,

https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
http://arxiv.org/abs/1810.04805
https://www.aclweb.org/anthology/N06-2015
https://www.aclweb.org/anthology/N06-2015

Constrained Optimization with Dynamic Bound-scaling for Effective NLP Backdoor Defense

abs/1907.11692, 2019b. URL http://arxiv.org/
abs/1907.11692.

Liu, Y., Ma, X., Bailey, J., and Lu, F. Reflection backdoor:
A natural backdoor attack on deep neural networks. In
European Conference on Computer Vision, pp. 182–199.
Springer, Cham, 2020.

Maas, A., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., and
Potts, C. Learning word vectors for sentiment analysis.
In Proceedings of the 49th annual meeting of the asso-
ciation for computational linguistics: Human language
technologies, pp. 142–150, 2011a.

Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng,
A. Y., and Potts, C. Learning word vectors for senti-
ment analysis. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics:
Human Language Technologies, pp. 142–150, Portland,
Oregon, USA, June 2011b. Association for Computa-
tional Linguistics. URL http://www.aclweb.org/
anthology/P11-1015.

Melamud, O., Goldberger, J., and Dagan, I. context2vec:
Learning generic context embedding with bidirectional
lstm. In Proceedings of the 20th SIGNLL conference
on computational natural language learning, pp. 51–61,
2016.

Mendivil, F., Shonkwiler, R., and Spruill, M. Restarting
search algorithms with applications to simulated anneal-
ing. Advances in Applied Probability, 33(1):242–259,
2001.

Ni, J., Li, J., and McAuley, J. Justifying recommendations
using distantly-labeled reviews and fine-grained aspects.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pp. 188–197, 2019.

Peters, M. E., Ammar, W., Bhagavatula, C., and Power, R.
Semi-supervised sequence tagging with bidirectional lan-
guage models. arXiv preprint arXiv:1705.00108, 2017.

Pruthi, D., Dhingra, B., and Lipton, Z. C. Combating adver-
sarial misspellings with robust word recognition. arXiv
preprint arXiv:1905.11268, 2019.

Qi, F., Chen, Y., Li, M., Yao, Y., Liu, Z., and Sun, M. Onion:
A simple and effective defense against textual backdoor
attacks. arXiv preprint arXiv:2011.10369, 2020.

Qi, F., Li, M., Chen, Y., Zhang, Z., Liu, Z., Wang, Y., and
Sun, M. Hidden killer: Invisible textual backdoor attacks
with syntactic trigger. arXiv preprint arXiv:2105.12400,
2021a.

Qi, F., Yao, Y., Xu, S., Liu, Z., and Sun, M. Turn the
combination lock: Learnable textual backdoor attacks
via word substitution. arXiv preprint arXiv:2106.06361,
2021b.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. SQuAD:
100,000+ Questions for Machine Comprehension of Text.
arXiv e-prints, art. arXiv:1606.05250, 2016.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. Squad:
100,000+ questions for machine comprehension of text.
arXiv preprint arXiv:1606.05250, 2016.

Salem, A., Wen, R., Backes, M., Ma, S., and Zhang, Y. Dy-
namic backdoor attacks against machine learning models.
arXiv preprint arXiv:2003.03675, 2020.

Sang, E. F. and De Meulder, F. Introduction to the conll-
2003 shared task: Language-independent named entity
recognition. arXiv preprint cs/0306050, 2003.

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. Distilbert,
a distilled version of bert: smaller, faster, cheaper and
lighter. ArXiv, abs/1910.01108, 2019.

Shen, G., Liu, Y., Tao, G., An, S., Xu, Q., Cheng, S., Ma,
S., and Zhang, X. Backdoor scanning for deep neural
networks through k-arm optimization. arXiv preprint
arXiv:2102.05123, 2021a.

Shen, L., Ji, S., Zhang, X., Li, J., Chen, J., Shi, J., Fang, C.,
Yin, J., and Wang, T. Backdoor pre-trained models can
transfer to all. arXiv preprint arXiv:2111.00197, 2021b.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning,
C. D., Ng, A. Y., and Potts, C. Recursive deep models for
semantic compositionality over a sentiment treebank. In
Proceedings of the 2013 conference on empirical methods
in natural language processing, pp. 1631–1642, 2013.

Song, C., Rush, A. M., and Shmatikov, V. Adversarial
semantic collisions. arXiv preprint arXiv:2011.04743,
2020.

Sun, Z., Yu, H., Song, X., Liu, R., Yang, Y., and Zhou, D.
Mobilebert: a compact task-agnostic bert for resource-
limited devices. arXiv preprint arXiv:2004.02984, 2020.

Tao, G., Liu, Y., Shen, G., Xu, Q., An, S., Zhang, Z., and
Zhang, X. Model orthogonalization: Class distance hard-
ening in neural networks for better security. In 2022 IEEE
Symposium on Security and Privacy (SP). IEEE, 2022.

http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015

Constrained Optimization with Dynamic Bound-scaling for Effective NLP Backdoor Defense

Tjong Kim Sang, E. F. and De Meulder, F. Introduction
to the conll-2003 shared task: Language-independent
named entity recognition. In Proceedings of the Sev-
enth Conference on Natural Language Learning at HLT-
NAACL 2003 - Volume 4, CONLL ’03, pp. 142–147,
USA, 2003. Association for Computational Linguistics.
doi: 10.3115/1119176.1119195. URL https://doi.
org/10.3115/1119176.1119195.

Turian, J., Ratinov, L.-A., and Bengio, Y. Word rep-
resentations: A simple and general method for semi-
supervised learning. In Proceedings of the 48th Annual
Meeting of the Association for Computational Linguis-
tics, pp. 384–394, Uppsala, Sweden, July 2010. Asso-
ciation for Computational Linguistics. URL https:
//aclanthology.org/P10-1040.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Wallace, E., Feng, S., Kandpal, N., Gardner, M., and Singh,
S. Universal adversarial triggers for attacking and analyz-
ing nlp. arXiv preprint arXiv:1908.07125, 2019.

Wang, B., Yao, Y., Shan, S., Li, H., Viswanath, B., Zheng,
H., and Zhao, B. Y. Neural cleanse: Identifying and
mitigating backdoor attacks in neural networks. In 2019
IEEE Symposium on Security and Privacy (SP), pp. 707–
723. IEEE, 2019.

Wang, R., Zhang, G., Liu, S., Chen, P.-Y., Xiong, J., and
Wang, M. Practical detection of trojan neural networks:
Data-limited and data-free cases. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part XXIII 16, pp. 222–
238. Springer, 2020.

Weischedel, R. and Brunstein, A. Bbn pronoun corefer-
ence and entity type corpus. Linguistic Data Consortium,
Philadelphia, 112, 2005.

Wu, D. and Wang, Y. Adversarial neuron pruning purifies
backdoored deep models. Advances in Neural Informa-
tion Processing Systems, 34, 2021.

Xu, X., Wang, Q., Li, H., Borisov, N., Gunter, C. A., and Li,
B. Detecting ai trojans using meta neural analysis. arXiv
preprint arXiv:1910.03137, 2019.

Yang, W., Li, L., Zhang, Z., Ren, X., Sun, X., and He, B.
Be careful about poisoned word embeddings: Exploring
the vulnerability of the embedding layers in nlp models.
arXiv preprint arXiv:2103.15543, 2021a.

Yang, W., Lin, Y., Li, P., Zhou, J., and Sun, X. Rethinking
stealthiness of backdoor attack against nlp models. In Pro-
ceedings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pp. 5543–5557, 2021b.

Zhang, Z., Xiao, G., Li, Y., Lv, T., Qi, F., Liu, Z., Wang, Y.,
Jiang, X., and Sun, M. Red alarm for pre-trained mod-
els: Universal vulnerabilities by neuron-level backdoor
attacks. arXiv preprint arXiv:2101.06969, 2021.

https://doi.org/10.3115/1119176.1119195
https://doi.org/10.3115/1119176.1119195
https://aclanthology.org/P10-1040
https://aclanthology.org/P10-1040

Constrained Optimization with Dynamic Bound-scaling for Effective NLP Backdoor Defense

Appendix

A. Detailed Experimental Settings
Tasks and Evaluation Models. We evaluate our method
on 3 popular NLP tasks: Sentiment Analysis (SA) (Socher
et al., 2013), Name Entity Recognition (NER) (Sang &
De Meulder, 2003; Melamud et al., 2016) and Question
Answering (QA) (Rajpurkar et al., 2016). The SA models
are trained on 7 different datasets from Amazon review (Ni
et al., 2019) and IMDB (Maas et al., 2011b) to output bi-
nary predictions (i.e., positive and negative). For NER, we
consider the 540 TrojAI round 7 models, in which 180 from
the training set and 360 from the test set. The datasets used
to train these NER models include CoNLL-2002 (Tjong
Kim Sang & De Meulder, 2003) with 4 name entities, the
BNN corpus (Weischedel & Brunstein, 2005) with 4 name
entities and OntoNotes (Hovy et al., 2006) with 6 name en-
tities. A model is supposed to identify all the valid entities
in given samples. For the QA task, we evaluate the 120 and
360 models from the TrojAI round 8 training and test sets, re-
spectively. The QA models are trained on 2 public datasets:
SQUAD V2 (Rajpurkar et al., 2016) and SubjQA (Bjerva
et al., 2020). Given a pair of question and context, a QA
model is supposed to predict the position of answer in the
context. In total, there are 7 transformer architectures: Dis-
tilBERT (Sanh et al., 2019), GPT-2 (Radford et al., 2019),
BERT (Devlin et al., 2018a), RoBERTa (Liu et al., 2019b),
MobileBERT (Sun et al., 2020), Deepset (deepset, 2020)
and Google Electra (Clark et al., 2020).

Attack Setting. Standard Data Poisoning (SDP) (Gu et al.,
2017) is used for generating trojaned models in the TrojAI
datasets. In particular, 9 poisoning configurations are used
for the different tasks. Specifically, based on the attack goal,
there are two types of attacks: universal attack which flips
samples from all classes to the target class and label spe-
cific attack which only flips samples from a certain victim
class to the target class. Based on the trigger effect range,
there are global trigger, which is effective at any position
in the input sentence, local trigger which can only cause
misclassification when inserted at a certain position (range).
For example, in the SA task, a local trigger can be set as
effective only when it is in the first half of an input sentence.
In the QA task, a sample local trigger can trigger misclassi-
fication only if it is stamped in the question. A trigger can
be a single character, word or a short phrase.

Defense Setting. For backdoor detection, we use 20 samples
per class in scanning, meaning that the trigger ought to flip
majority of these samples. For SA, we use an auxiliary
benign model during the optimization to insure that the
inverted words are neutral (to avoid false positives). The
benign model is randomly drawn from the TrojAI model set.
For the NER models, as the number of labels is relatively

large, we apply a strategy similar to K-Arm (Shen et al.,
2021a), in which we run 20 epochs for each victim-target
label pair and select the most promising top two pairs based
on the loss value for further optimization. The same strategy
is applied for all the optimization related baselines.

For backdoor removal, we randomly select 20 trojaned mod-
els from the TrojAI training set in each round and first run
our method to invert triggers, then optimize based on Eq.6 to
unlearn the backdoors. We use 10% of the training data and
20% of the chosen training samples are stamped with our in-
verted trigger and marked with the correct labels. The clean
accuracy and ASR before and after removal are evaluated
on the whole test set.

Baselines. We compare our method with 4 baselines for the
backdoor detection task: ASCC (Dong et al., 2021), Genetic
Algorithm (GA) (Alzantot et al., 2018), UAT (Wallace et al.,
2019), and T-Miner (Azizi et al., 2021). ASCC (Dong et al.,
2021) and GA (Alzantot et al., 2018) were proposed to
generate NLP adversarial examples. They can be easily
adapted for backdoor trigger inversion. In particular, we
change their search space from small synonym lists to the
entire dictionary. For ASCC, we set the coefficient of the
sparsity regularization term to 10 as suggested in the paper.
For GA, we set the population size to 300 and the mutation
rate to 0.5 and the number of generations to 10. For UAT,
we set k=1 in the top-k token search. ASCC and UAT are
evaluated on all the models in the TrojAI datasets. For
the other two costly methods, we evaluate GA on 248 SA
models, 120 NER models and 180 QA models with half
trojaned and half benign, and T-Miner only on the 248
SA models from TrojAI round 6. Note that T-Miner was
proposed for the SA task and requires substantial efforts to
extend it to other tasks.

Parameters Setting. We set the length of trigger to 10
(i.e., inverting 10 weight vectors). We set the number of
optimization epochs to 200 and use the Adam (Kingma
& Ba, 2014) optimizer with the initial learning rate 0.5.
All optimization related baseline methods share the same
configuration. All experiments are done on a machine with
a single 24GB memory NVIDIA Quadro RTX 6000 GPU.

B. Ablation Study
We study the contributions of our design choices on a subset
of TrojAI models, with 20 trojaned and 20 benign for each
task. As shown in Table 5, without temperature scaling/re-
duction, the optimization keeps searching in the continuous
space and converges inside false zones, leading to the low
precision scores and hence the low accuracy. Without back-
tracking, the algorithm continues to reduce the temperature
and eventually makes the optimizer walk in a very rugged
(close to discrete) space. As a result, it produces many false

Constrained Optimization with Dynamic Bound-scaling for Effective NLP Backdoor Defense

Table 5: Ablation Study

Method
QA NER QA

Precision Recall Acc Precision Recall Acc Precision Recall Acc

w/o Temp Scaling 0.559 0.950 0.600 0.581 0.900 0.625 0.563 0.900 0.600

w/o Backtracking 1.000 0.800 0.900 0.936 0.750 0.850 1.000 0.700 0.850

Ours 1.000 0.950 0.975 0.947 0.900 0.925 1.000 0.850 0.925

negatives, leading to the low recall scores and hence the low
accuracy.

