
Correlations between Deep Neural Network Model Coverage
Criteria and ModelQuality

Shenao Yan
shenao.yan@rutgers.edu

Rutgers University
USA

Guanhong Tao
taog@purdue.edu
Purdue University

USA

Xuwei Liu
liu2598@purdue.edu
Purdue University

USA

Juan Zhai
juan.zhai@rutgers.edu
Rutgers University

USA

Shiqing Ma
shiqing.ma@rutgers.edu

Rutgers University
USA

Lei Xu
xlei@nju.edu.cn

Nanjing University
China

Xiangyu Zhang
xyzhang@cs.purdue.edu

Purdue University
USA

ABSTRACT

Inspired by the great success of using code coverage as guidance in

software testing, a lot of neural network coverage criteria have been

proposed to guide testing of neural network models (e.g., model

accuracy under adversarial attacks). However, while the monotonic

relation between code coverage and software quality has been sup-

ported by many seminal studies in software engineering, it remains

largely unclear whether similar monotonicity exists between neural

network model coverage and model quality. This paper sets out to

answer this question. Specifically, this paper studies the correla-

tion between DNN model quality and coverage criteria, effects of

coverage guided adversarial example generation compared with

gradient decent based methods, effectiveness of coverage based

retraining compared with existing adversarial training, and the

internal relationships among coverage criteria.

CCS CONCEPTS

· Software and its engineering → Software testing and de-

bugging; · Computing methodologies→ Neural networks.

KEYWORDS

Software Testing, Deep Neural Networks

ACM Reference Format:

Shenao Yan, Guanhong Tao, Xuwei Liu, Juan Zhai, Shiqing Ma, Lei Xu,

and Xiangyu Zhang. 2020. Correlations between Deep Neural Network

Model Coverage Criteria and Model Quality. In Proceedings of the 28th

ACM Joint European Software Engineering Conference and Symposium on the

Foundations of Software Engineering (ESEC/FSE ’20), November 8ś13, 2020,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7043-1/20/11. . . $15.00
https://doi.org/10.1145/3368089.3409671

Virtual Event, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.

1145/3368089.3409671

1 INTRODUCTION

Deep Neural Network (DNN) is becoming an integral part of the

new generation of software systems, such as self-driving vehicle

systems, computer vision systems, and various kinds of bot systems.

Just like software testing is a key step in traditional software devel-

opment life-cycle, many researchers and practitioners believe that

DNN model testing is critical to model quality and hence the whole

system quality [39, 47, 59, 71]. Software testing can be classified as

black-box testing and white-box testing, with the former generating

test cases from the specification without looking into the imple-

mentation whereas the later generating test cases based on the

implementation. Specifically, white-box testing aims to generate

test cases to improve code coverage. High code coverage provides

more confidence about the subject software’s quality. It is widely

used in practice because progress can be easily quantified and test

generation is more amenable to automation (compared to black-box

testing). The upper half of Figure 1 shows a typical life-cycle of

software testing. Given a subject software, various test generation

engines, such as random input generation, fuzzing, symbolic exe-

cution, search based test generation, can be used to generate test

cases. The generated test suite is executed and the code coverage is

measured and provided as feed-back to the test generation engine,

whose goal is hence to generate more test cases that can improve

coverage. The failing test cases are reported to the developers who

fix the corresponding faults/bugs/defects, leading to a new version

of the subject software.

Inspired by the great success of white-box software testing, re-

searchers have proposed white-box DNN testing to improve model

quality [15, 39, 47, 59, 71, 79]. The life-cycle of DNN model testing

closely resembles that of software testing, as shown in the lower

half of Figure 1. Specifically, the subject becomes a DNN model

instead of a program. Model input generation techniques are used

to generate inputs. The generation is guided by some coverage cri-

terion just like in software test generation. A failing input example

775

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3368089.3409671
https://doi.org/10.1145/3368089.3409671
https://doi.org/10.1145/3368089.3409671

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA S. Yan, G. Tao, X. Liu, J. Zhai, S. Ma, L. Xu, X. Zhang

Software
Test Generation

Engine
Test Case Code Coverage Bug Fixing

DNN model
Model Input

Generation
Test Case RetrainingNeuron Coverage

Figure 1: Software Development VS. DNN Development

is the one that causes model mis-classification and can be used to

retrain the model. The retraining procedure is analogous to the bug

fixing procedure in the software testing life-cycle. It yields a new

version of the model.

Code coverage criteria play a critical role in software (white-box)

testing. A large number of coverage criteria have been proposed and

used. For example, statement coverage measures the percentage of

statements that are executed by a test suite; edge coverage measures

the percentage of exercised control flow edges; and path coverage

measures the percentage of program paths that get executed. Differ-

ent criteria have different levels of strength (in disclosing bugs) and

entail various amount of efforts. Specifically, statement coverage is

the simplest and also the weakest, whereas path coverage is one

of the most expensive and most powerful. These criteria provide a

spectrum of options for developers when they are balancing devel-

opment cost and product quality. Inspired by these code coverage

criteria, researchers have proposed a large set of DNN model cov-

erage criteria [32, 39, 47, 71]. Specifically, a DNN model consists of

an input layer, an output layer, and a number of inner layers, each

containing a set of neurons. During model inference/prediction,

neuron activation values at a layer are computed based on those

from the previous layer. During the activation value computation

for a neuron, if the value is smaller than 0, it is set to 0 and hence

has 0 contribution to the later layer(s). We say the neuron is not

activated. Researchers observe the analogy between activating a

neuron and covering a software artifact (e.g., statement). There-

fore, they propose a number of coverage criteria based on how

neurons are activated. For example, neuron coverage [47] measures

the percentage of neurons that are activated, analogous to state-

ment coverage; and neuron pattern coverage [39, 71] measures the

activation path, analogous to path coverage.

Despite the inspiring correspondence between software testing

and DNN model testing, there are a few open questions that need

to be answered. Specifically, the effectiveness of white-box soft-

ware testing is built on a basic assumption for the relation between

code coverage and software quality. Specifically, while the devel-

opers generate more test cases to achieve higher code coverage,

more bugs are disclosed and fixed and hence the software quality

is monotonically improved (without considering regression). As

such, coverage driven test generation is one of the most popular

test generation strategies. While such monotonicity assumption is

largely proved (empirically) in software testing, its counter-part

in model testing is unclear (as far as we know). In fact, the seman-

tics of DNN models is substantially different from the semantics

of programs. The syntactic analogy between software statements

and neurons may not directly translate to their semantic analogy.

Intuitively, program behaviors are largely discrete whereas model

behaviors are continuous. A statement being covered suggests that

new functionality is exercised, which is a discrete and modular

event. However, a neuron being activated may not have similar

implication. It may well be that the semantics of a model lies in the

distribution of the entire activation vector instead of a set of discrete

events of whether individual neurons are activated.

Therefore, this paper aims to study the following research ques-

tions that we believe are important for white-box DNN model

testing. First, we want to study if there is monotonic relation be-

tween model coverage improvement and model quality: is it true

that training sets with increasing model coverage lead to increasing

model quality. Second, we want to study if coverage driven test

generation is effective in model testing, when compared to existing

test generation techniques that are solely based on optimization

and leverage continuity and differentiability of model behaviors.

Third, we want to study if test cases generated using model cov-

erage criteria have unique advantage in improving model quality

(analogous to bug fixing). Last, we aim to understand if there is

correlation in the various model coverage criteria.

In our study, we make use of 8 models and 3 datasets. We lever-

age model coverage based test generation techniques in DeepX-

plore [47], DeepGauge [39], DeepHunter [71] and SADL [32], and

the state-of-the-art optimization based adversarial example gener-

ation techniques C&W [11] and PGD [41], to generate test cases

that lead to different levels of coverage. These test cases are used to

retrain models. Then we measure the quality improvement using a

set of well-established metrics and study the aforementioned four

research questions. Through our study, we find:

• DNN coverage criteria do not have monotonic relations with

model quality (measured by model accuracy in the presence

of adversarial examples).

• Although DNN coverage criteria can be used as guidance

to find adversarial examples, effective adversarial examples

may not lead to higher coverage.

• Existing methods used to generate adversarial examples

based on coverage criteria usually add larger (i.e., measured

by ℓ𝑝 distance) and human visible (i.e., measured by vi-

sual similarity) perturbations, compared to existing gradient

based methods. Using such inputs in model testing is analo-

gous to having program inputs that may violate the software

input preconditions.

• Adversarial examples generated by DNN coverage guided

methods can be used to retrain a model to improve model

robustness against the adversarial method used to generate

the training inputs (e.g., performing semantic preserving

operations like changing blurriness to maximize coverage).

However, such models are not robust against gradient based

attacks (e.g., PGD). On the other hand, PGD based adversarial

training can improve the model robustness against PGD

attacks but not attacks by using coverage as guidance.

776

Correlations between Deep Neural Network Model Coverage Criteria and Model Quality ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

• Most existing DNN coverage criteria correlate with each

other, some having strong correlations. This helps explain

their similar behaviors in all experiments. However, it is

unclear whether there exists partial order among them like

code coverage criteria.

2 BACKGROUND

2.1 Deep Neural Network

A deep neural network(DNN) is a parameterized function F that

maps an 𝑛−dimensional input 𝑥 ∈ R𝑛 to one of the k output classes.

The output of the DNN 𝑃 ∈ R𝑘 is a probability distribution over the

k classes. In particular, 𝑃 (𝑥)𝑗 is the probability of the input belong-

ing to class 𝑗 . An input 𝑥 is deemed as class 𝑗 with the highest proba-

bility such that the output class label𝑦 has𝑦 = argmax𝑗 ∈[1,𝑘] 𝑃 (𝑥)𝑗 .

During training, with the assistance of a training dataset of

inputs with known ground-truth labels, the parameters including

weights and bias of the DNN model are determined. Specifically,

given a learning task, suppose the training dataset is a set,D𝑡𝑟𝑎𝑖𝑛 =

{𝑥𝑖 , 𝑦𝑖 }
𝑁
𝑖=1, of 𝑁 input samples 𝑥 = {𝑥1, 𝑥2, ..., 𝑥𝑁 } ∈ R𝑛 and the

corresponding ground-truth labels 𝑦 = {𝑦1, 𝑦2, ..., 𝑦𝑁 } ∈ [1, 𝑘]. F is

the deep learning model that predicts the corresponding outcomes

𝑦′ based on the given input 𝑥 , 𝑖 .𝑒 ., 𝑦′ = F(𝑥). Within the course of

model training, there is a loss function L =
∑
1≤𝑖≤𝑛 | |𝑦′𝑖 − 𝑦𝑖 | |

2. So

the process of model training can be formalized as:

𝑚𝑖𝑛
∑

1≤𝑖≤𝑛

| |𝑦′𝑖 − 𝑦𝑖 | |
2

For a neuron 𝑜 , if it is activated (i.e., activation value is larger

than some threshold value) by some input examples (in a set), it

becomes an activated neuron for the set. When we provide the

training dataset to the model, the range of the observed neuron

activation values is represented as [𝑙𝑜𝑤𝑜 , ℎ𝑖𝑔ℎ𝑜].

When we provide the test dataset𝑇 , the neuron activation values

may not be limited in [𝑙𝑜𝑤𝑜 , ℎ𝑖𝑔ℎ𝑜]. Instead, the values can also fall

in (−∞, 𝑙𝑜𝑤𝑜) or (ℎ𝑖𝑔ℎ𝑜 , +∞). We refer to (−∞, 𝑙𝑜𝑤𝑜)∪(ℎ𝑖𝑔ℎ𝑜 , +∞)

as the corner case regions (of the neuron). Let 𝜙 (𝒙, 𝑜) be the output

value of neuron𝑜 for input𝑥 , then𝑈𝑝𝑝𝑒𝑟𝐶𝑜𝑟𝑛𝑒𝑟𝑁𝑒𝑢𝑟𝑜𝑛 (𝑈𝐶𝑁) and

𝐿𝑜𝑤𝑒𝑟𝐶𝑜𝑟𝑛𝑒𝑟𝑁𝑒𝑢𝑟𝑜𝑛 (𝐿𝐶𝑁), which represent the set of neurons

that ever fall into the corner case regions, respectively, given some

test inputs. Formally,

𝑈𝐶𝑁 = {𝑜 ∈ 𝑂 | ∃𝒙 ∈ 𝑇 : 𝜙 (𝒙, 𝑜) ∈ (ℎ𝑖𝑔ℎ𝑜 , +∞)}

𝐿𝐶𝑁 = {𝑜 ∈ 𝑂 | ∃𝒙 ∈ 𝑇 : 𝜙 (𝒙, 𝑜) ∈ (−∞, 𝑙𝑜𝑤𝑜)}

The symbols we use in this paper are shown as follows:

LIST OF SYMBOLS

F A DL classifier on k classes, where F(𝑥𝑖) = 𝑦𝑖
𝐴𝑁 Activated neuron

𝐿𝐶𝑁 Set of activated neurons that fall in the corner-case regions

𝑁 The number of samples in input dataset

𝑂 Universal set of neurons of a DNN

𝑜 Neuron

𝑃 SoftMax layer output of F, where F(𝑥) = argmax
𝑗

𝑃 (𝑥)𝑗

𝑃 (𝑥)𝑗 The j-th probability of 𝑃 (𝑥), where 𝑗 ∈ {1, ..., 𝑘}

𝑈𝐶𝑁 Set of activated neurons that fall in the corner-case regions

𝑥𝑎𝑖 An adversarial examples of 𝑥𝑖
𝑥𝑖 Input samples, 𝑖 ∈ (1, 𝑁)

𝑦𝑖 The corresponding ground-truth label of 𝑥𝑖 , where 𝑦𝑖 =

1, ..., 𝑘

2.2 Adversarial Examples and DNN Robustness

DNN models are vulnerable to adversarial examples. That is, given

an original input 𝑥𝑖 and a small adversarial perturbation 𝛿 , a DNN

model F has:

F(𝑥𝑎𝑖) = F(𝑥𝑖 + 𝛿) = 𝑦𝑡 ≠ 𝑦𝑖 = F(𝑥𝑖)

Here, we use 𝑥𝑎𝑖 to represent 𝑥𝑖 +𝛿 , which is usually referred to as

an adversarial example. The perturbation 𝛿 added to the input is ma-

liciously manipulated by an adversary and it is commonly bounded

by ℓ𝑝 -norm, i.e., | |𝛿 | |𝑝 < 𝜖 . Symbol 𝑦𝑡 denotes the predicted label

of adversarial example 𝑥𝑎𝑖 , different from the original prediction

𝑦𝑖 . There exists a large body of different adversarial attacks. We

discuss two widely used attacks in this paper and employ them in

our experiment evaluation.

𝑪𝑾 attack is a set of powerful attacks based on different norm

measurements on the magnitude of perturbations introduced by

Carlini and Wagner [11]. In particular, CW is formalized as an

optimization problem to search for high confidence adversarial

examples with small magnitude of perturbations. They leverage

the logits Z(·) (i.e., outputs right before the softmax layer) instead

of the final prediction F(·) for generating perturbation. The objec-

tive function for optimization is the combination of target label

(|F(𝑥𝑎𝑖) − 𝑦𝑡 |) and small perturbation (| |𝛿 | |𝑝), which is achieved

using optimizer such as Adam.

𝑷𝑮𝑫 attack is a first-order universal adversary attack based on

Fast Gradient Sign Method (𝑭𝑮𝑺𝑴) [57]. FGSM performs a single

step update on the original sample 𝑥 along the direction of the

gradient of a loss function. The loss function is usually defined as

the cross-entropy between the output of a network and the true

label 𝑦. PGD [41] is an iterative variant of FGSM, which applies

the projected gradient descent algorithm with random starts to

FGSM. That is, for each attack iteration, given an input 𝑥𝑖 , it first

adds a small random perturbation within given bound | |𝑟 | |𝑝 < 𝜖

to the input, i.e., 𝑥 ′𝑖 = 𝑥𝑖 + 𝑟 . It then performs one step of FGSM

and applies the gradient 𝑑𝑥 to the input, i.e., 𝑥 ′′𝑖 = 𝑥 ′𝑖 + 𝑑𝑥 . The

updated sample is subsequently projected to the original bound,

i.e., 𝑥𝑎𝑖 = 𝑐𝑙𝑖𝑝 (𝑥 ′′𝑖 , 𝑥𝑖 − 𝜖, 𝑥𝑖 + 𝜖). The 𝑐𝑙𝑖𝑝 (·) function sets small

out-of-bound values to 𝑥𝑖 − 𝜖 and large ones to 𝑥𝑖 + 𝜖 . The process

continues until an adversarial example is generated or time-out.

2.3 Adversarial Training

Adversarial training, introduced by Goodfellow et al. [21] is one of

the most effective ways to improve DNN model robustness. The

overarching idea of adversarial training is to incorporate adversarial

examples for model training. That is, during each training iteration,

adversarial examples are first generated against the current state

of the model, and then used as training data for optimizing model

parameters. Madry et al. [41] leverage the PGD attack with multiple

steps for adversarial training. Adversarial training has been shown

effective for large scale dataset such as ImageNet [34].

777

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA S. Yan, G. Tao, X. Liu, J. Zhai, S. Ma, L. Xu, X. Zhang

3 COVERAGE BASED DNN TESTING

In this section, we first introduce a number of popular neuron

coverage criteria and discuss their intended usage.

3.1 DeepXplore

Pei et al. [47] introduced the neuron coverage (NC):

𝑁𝐶 =
|𝐴𝑁 |

|𝑂 |

where |𝐴𝑁 | denotes the number of activated neurons and |𝑂 |means

the total number of neurons. Basically, 𝑁𝐶 measures the percentage

of activated neurons (i.e., whose activation value is larger than 0) for

a given test suite and DNN model. DeepXplore views NC as the first

white-box testing metric for DL systems that can estimate the amount

of DL logic explored by a set of test inputs. And then, DeepXplore

tries to generate new test inputs that can maximize NC as well as

triggering differential behaviors in multiple DL systems that are

designed to have similar functionality. These different DNN models

are used as cross-reference to avoid manually labeling datasets. The

generation process applies three pre-defined image transformations:

adding a single black rectangle, changing all pixel values by a certain

degree and adding multiple small black rectangles, with the goal

of covering more neurons. After that, DeepXplore mixes these

generated examples with benign inputs to re-train the model to

improve model accuracy.

3.2 DeepGauge and DeepHunter

Ma et al. extended the coverage concept to different levels (i.e.,

neuron level, layer level) and proposed many new DNN coverage

based testing criteria in DeepGauge [39], and demonstrated that (a

test suite with) a higher coverage of these criteria potentially indicates

a higher chance to detect the DNN’s defects. Here, a defect is defined

as model mispredictions. DeepHunter [71] leverages such coverage

metrics as the feedback to fuzz DNN models to produce adversarial

samples. These new metrics include:

• 𝒌−multisection Neuron Coverage (KMNC). Given a neuron

𝑜 ∈ 𝑂 , the 𝑘−multisection neuron coverage measures how thor-

oughly the given set of test inputs𝑇 covers the range [𝑙𝑜𝑤𝑜 , ℎ𝑖𝑔ℎ𝑜].

To quantify KMNC, the range [𝑙𝑜𝑤𝑜 , ℎ𝑖𝑔ℎ𝑜] is divided into 𝑘 equal

sections (i.e., 𝑘−multisections), with 𝑘 > 0. Also 𝑆𝑜𝑚 denotes the

𝑚−th section with 1 ≤ 𝑚 ≤ 𝑘 . Then 𝜙 (𝒙, 𝑜) ∈ 𝑆𝑜𝑚 means the𝑚−th

section is covered by at least one input 𝒙 ∈ 𝑇 .

𝐾𝑀𝑁𝐶 =

∑
𝑜∈𝑂 |{𝑆𝑜𝑚 | ∃𝒙 ∈ 𝑇 : 𝜙 (𝒙, 𝑜) ∈ 𝑆𝑜𝑚}|

𝑘 × |𝑂 |

• Neuron Boundary Coverage (NBC).

𝑁𝐵𝐶 =
|𝑈𝐶𝑁 | + |𝐿𝐶𝑁 |

2 × |𝑂 |

From the definition, it’s easy to see that 𝑁𝐵𝐶 shows how thor-

oughly the given set of test inputs𝑇 covers the corner-case regions.

• Strong Neuron Activation Coverage (SNAC).

𝑆𝑁𝐴𝐶 =
|𝑈𝐶𝑁 |

|𝑂 |

Similar to 𝑁𝐵𝐶 , 𝑆𝑁𝐴𝐶 measures the percentage of upper corner-

case regions that are covered by the set of test inputs 𝑇 .

• Top−𝒌 Neuron Coverage (TKNC).

𝑇𝐾𝑁𝐶 =
|
⋃

𝒙∈𝑇 (
⋃

1≤𝑙≤𝐿 𝑡𝑜𝑝𝑘 (𝒙, 𝑙)) |

|𝑂 |

Here, 𝐿 denotes layers of a DNN and 𝑙 ∈ (1, 𝐿) is the 𝑙−th layer

of a DNN. Function 𝑡𝑜𝑝𝑘 (𝒙, 𝑙) denotes the neurons that have the

largest k outputs on layer 𝑙 given 𝒙 .𝑇𝐾𝑁𝐶 measures the percentage

of neurons that have ever been the top 𝑘 neurons within its layer

for a given input set 𝑇 .

• Top−𝒌 Neuron Patterns (TKNP). Given a test input 𝒙 , the

sequence of the top−𝑘 neurons on each layer also forms a pattern.

A pattern is an element of 2𝑢1 × 2𝑢2 × · · · × 2𝑢
𝑙
, where 2𝑢

𝑙
is the set of

subsets of the neurons on the 𝑙−th layer, for 1 ≤ 𝑙 ≤ 𝐿. Given a test

input set 𝑇 , the number of top−𝑘 neuron patterns for 𝑇 is defined

as follows.

𝑇𝐾𝑁𝑃 = |{(𝑡𝑜𝑝𝑘 (𝒙, 1)), ..., (𝑡𝑜𝑝𝑘 (𝒙, 𝐿)) | 𝒙 ∈ 𝑇 |}|

Intuitively, 𝑇𝐾𝑁𝑃 measures the number of different activation

patterns for the most active 𝑘 neurons on each layer. It is not a ratio

but rather a number.

DeepHunter is a fuzz testing framework for finding potential

DNN defects. It mostly leverages the above coverage criteria as feed-

back to guide the test generation, and to generate new samples. It

performs pixel value transformations (i.e., changing image contrast,

brightness, blur and noise) and affine transformations (i.e., image

translation, scaling, shearing and rotation). To generate images that

preserve its original semantics, a ℓ∞ based threshold is set. If the

difference between the original and the generated image is larger

than the threshold, the generated image is discarded.

3.3 SADL

Kim et al. introduced surprise adequacy to measure the coverage of

discredited input surprise range for DL systems [32]. These terms are

explained in the following. A test example is łgoodž if it is sufficiently

but not overly surprising comparing with the training data, that is,

sufficiently but not overly deviant from the training distribution.

Two measurements of surprise were introduced: one is based on

Keneral Density Estimation (KDE) to approximate the likelihood

of the system having seen a similar input during training, and the

other is based on the distance between the vectors representing the

neuron activation traces of the given input and the training data

(e.g., Euclidean distance). The proposed metrics were also compared

with other metrics in DeepGauge and DeepXplore. The results show

that they are correlated. Moreover, they were used to guide the

retraining of DNN models to improve robustness.

•Likelihood-based SurpriseAdequacy (LSA). Let𝛼𝑜 (𝑥) denote

the activation value of a single neuron 𝑜 with respect to an input

𝑥 . For a set of neurons in a layer of the DNN, denoted as 𝑂 ′ ⊆ 𝑂 ,

𝛼𝑂′ (𝑥) denotes a vector of activation values that represents the

Activation Trace (AT) of 𝑥 over neurons in 𝑂 ′. For a set of inputs

𝑋 , 𝐴𝑂′ (𝑋) = {𝛼𝑂′ (𝑥) |𝑥 ∈ 𝑋 } denotes the set of activation traces

observed for neurons in 𝑂 ′. Given a training set 𝑇 , a bandwidth

matrix 𝐻 and a Gaussian kernal function 𝐾 , the activation trace of

a new input 𝑥 , KDE produces a density function 𝑓 as follows.

𝑓 (𝑥) =
1

|𝐴𝑂′ (𝑇) |

∑

𝑥𝑖 ∈𝑇

𝐾𝐻 (𝛼𝑂′ (𝑥) − 𝛼𝑂′ (𝑥𝑖))

778

Correlations between Deep Neural Network Model Coverage Criteria and Model Quality ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

Intuitively, the function measures a normalized distance between

the activation values of 𝑥 and those of individual inputs in 𝑇 (re-

garding 𝑂 ′). Then LSA is defined as follows.

𝐿𝑆𝐴(𝑥) = −𝑙𝑜𝑔(𝑓 (𝑥))

• Distance-based Surprise Adequacy (DSA). Assume a DL sys-

tem 𝐹 , which consists of a set of neurons 𝑂 , is trained for a classifi-

cation task with a set of classes 𝑌 , using a training dataset𝑇 . Given

the set of activation traces 𝐴𝑂 (𝑇), a new input 𝑥 , and a predicted

class of the new input 𝐶 ∈ 𝑌 . The closest neighbor of 𝑥 that shares

the same output class, denoted as 𝑥𝑎 , and their distance, are defined

as follows.
𝑥𝑎 = argmin

𝐹 (𝑥𝑖)=𝑦

| |𝛼𝑂 (𝑥) − 𝛼𝑂 (𝑥𝑖) | |

𝑑𝑖𝑠𝑡𝑎 = | |𝛼𝑂 (𝑥) − 𝛼𝑂 (𝑥𝑎) | |

The closest neighbor in a class other than 𝑦, denoted by 𝑥𝑏 , and

their distance 𝑑𝑖𝑠𝑡𝑏 , are defined as follows.

𝑥𝑏 = argmin
𝐹 (𝑥𝑖) ∈𝑌\{𝑦 }

| |𝛼𝑂 (𝑥) − 𝛼𝑂 (𝑥𝑖) | |

𝑑𝑖𝑠𝑡𝑏 = | |𝛼𝑂 (𝑥) − 𝛼𝑂 (𝑥𝑏) | |

Then the DSA is defined in the following. Intuitively, it measures

if 𝑥 is closer to the target class or a different class.

𝐷𝑆𝐴(𝑥) =
𝑑𝑖𝑠𝑡𝑎

𝑑𝑖𝑠𝑡𝑏

3.4 Research Questions

Testing is a critical step in software development life-cycle to eval-

uate software quality, find bugs and help developers to improve the

software. In traditional Software Engineering, test coverage criteria

(including path coverage, basic block coverage etc.) are a set of

metrics used to describe the degree to which the subject software

is tested, given a test suite. These criteria are usually computed

as the number of some software artifacts (e.g., statements) that

are executed by at least one test case, divided by the total num-

ber of artifacts. An important hypothesis, which has been proven

by numerous seminal studies [6, 16, 17, 30, 33, 35, 42, 43, 45, 67],

is that higher test coverage suggests better software quality, given

the same subject software. This is because a test suite achieving

higher coverage is believed to have a better chance of disclosing

defects in the subject software. Different software coverage criteria

denote the various trade-offs between the difficulty (to achieve

high coverage) and the capability of disclosing defects. For example,

statement coverage is the least difficult to achieve with the weakest

effectiveness in finding bugs, whereas path coverage is much more

difficult to achieve but has stronger bug-finding capabilities. DNN

coverage metrics were introduced with the goal of serving deep

learning model engineering in a way similar to how software cover-

age criteria have been serving software engineering. For example,

in DeepXplore, the authors believe that łneuron coverage is a good

metric for DNN testing comprehensivenessž. In DeepGauge [39], the

paper states that the proposed criteria can łeffectively capture the

difference between the original test data and adversarial examples,

where DNNs could and could not correctly recognize, respectively,

demonstrating that a higher coverage of our criteria potentially in-

dicate a higher chance to detect the DNN s defectsž. And in SADL,

the paper concludes that łSA can provide guidance for more effective

retraining against adversarial examples based on our interpretation

of the observed trendž. In software testing, the correlations between

coverage and software quality are well established, which have

been driving decades of practice and research. In this paper, we aim

to study if the correlations between DNN coverage metrics and the

intended objectives can be established.

Based on the above quoted usage of DNN coverage criteria, we

propose the following research questions.

3.4.1 RQ: Are DNN coverage metrics correlated with DNN model

robustness? In software testing, the correlation between test cover-

age and software quality is intuitively established as follows. Given

a subject program and an initial test suite, developers generate new

test cases to cover software artifacts that have not been covered

before (e.g., new statements). These new test cases may disclose

defects in the newly covered components. Fixing these defects leads

to the improvement of software quality. To validate the correlations

between DNN model robustness and coverage criteria, we draw

the following analogies: subject model (in DNN testing) vs. subject

program (in software testing); training set vs. initial software test

suite; adversarial example generation or GAN based example gen-

eration vs. software test generation; misclassifications (caused by

adversarial examples) vs. software bugs; and adversarial training

vs. software bug fixing. With such analogies, we have the following

experiment design.

Experiment Design: Assume the subject model is 𝐹0. We use

adversarial example generation techniques to generate a large set of

adversarial examples. Given a DNN coverage criterion, we perform

input selection to select the examples that can lead to the most

substantial coverage improvement, and add them to the training

suite𝑇0 and acquire𝑇1. The process repeats to acquire𝑇2,𝑇3, ..., and

𝑇𝑟 until the coverage is full or cannot improve any more. Here, 𝑇2
is a superset of 𝑇1, 𝑇3 is a superset of 𝑇2, and so on. This process is

analogous to how the developers enhance their test suite overtime

to improve coverage. We then perform adversarial training using

𝑇1, 𝑇2, ... and 𝑇𝑟 , yielding 𝐹1, 𝐹2, ... and 𝐹𝑟 , respectively, just like

fixing software bugs disclosed by new test inputs. Then we use

existing methods [37] to measure model robustness and study the

correlations between robustness and coverage. Ideally, we would

expect to see these models have increasing levels of robustness.

3.4.2 RQ: Is coverage driven test generation effective in disclosing

DNN defects? How does it compare to the other commonly used

adversarial example generation techniques? In software testing, an

important functionality of code coverage is to guide test generation.

A large body of existing software test generation techniques, such

as symbolic/concolic execution [9, 13], fuzzing [7, 73], and search

based testing [5, 26], make use of code coverage as the guidance.

Analogously, researchers of DeepXplore tries to łgenerate inputs

that maximizing neuron coveragež and believe that łneuron coverage

helps in increasing the diversity of generated inputsž [47].

DeepHunter [71] łleverages multiple plugable coverage criteria

as feedback to guide the test generation from different perspectivesž.

However, while software behaviors are largely discrete, DNNmodel

behaviors are continuous. As such, there exist highly effective input

generation techniques built on optimizations (e.g., based on gra-

dients). While these techniques do not explicitly utilize coverage,

779

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA S. Yan, G. Tao, X. Liu, J. Zhai, S. Ma, L. Xu, X. Zhang

optimization algorithms have the implicit capabilities of exploring

different activation patterns by following the direction of gradients.

As such, we are interested in studying if coverage guided testing

has advantages over the popular gradient descent based methods, in

disclosing defects (i.e., generating adversarial examples). More over,

gradient based test generation often makes use of ℓ𝑝 -norm to bound

the scale of perturbation such that adversarial examples do not look

substantially different from the original input (in humans’ eyes). In

contrast, existing coverage guided test generation uses predefined

image transformations such as adding black rectangles, changing

image pixels by a certain degree [47], changing image blurriness

and rotating images [71]. See details in subsection 3.1 and subsec-

tion 3.2. Notice DeepHunter also uses a ℓ∞ based threshold value

to limit the change of the image. However, because the pre-defined

operations usually change the image significantly, this threshold

value is larger than what is used in gradient based methods. Also,

gradient based methods will try to minimize the change (e.g., ℓ𝑝
distance) while DeepHunter only checks if the value is smaller

than the threshold. Therefore, we also want to study the quality of

generated examples, in comparison with existing gradient descent

based techniques.

Experiment Design. To answer RQ 2, we utilize the test genera-

tion techniques in DeepHunter [71] (coverage criteria based) and

PDG [41] (gradient based) to generate test cases, D𝐻 and D𝑃 , re-

spectively, against the same DNN model. Then, we compare D𝐻

and D𝑃 from a few aspects. First, we compare the effectiveness

of these methods. Namely, we calculate the percentage of samples

in D𝐻 and D𝑃 that can lead to discovery of DNN defects (i.e.,

mis-prediction). Second, we compare the quality of generated sam-

ples by calculating their similarity with the original benign image.

Third, we calculate the coverage metrics for D𝑃 and try to see if

new adversarial examples lead to the growth of coverage.

3.4.3 RQ: Are the adversarial examples generated by DNN coverage

based testing effective in improving model robustness? How are they

compared to those generated by popular gradient descent based tech-

niques? In software testing, one aspect to measure effectiveness

of test generation techniques is the effectiveness of the generated

counter-examples (failing test cases) in bug fixing. Similar objec-

tives are explored in DNN testing. Particularly, DeepXplore and

SADL use the generated adversarial examples as part of the new

training dataset to retrain the model so that it can achieve better

accuracy against adversarial examples (i.e., more robust). For ex-

ample, the DeepXplore paper states that łtest inputs generated by

DeepXplore can also be used to retrain the corresponding DL model

to improve the model’s accuracy by up to 3%ž, and the SADL paper

states that (SADL) łcan improve classification accuracy of DL systems

against adversarial examples by up to 77.5% via retrainingž. There-

fore in this research question, we want to study the effectiveness

of DNN coverage based test generation in comparison with the

existing popular alternatives.

Experiment Design. To answer RQ 3, we conduct the following

experiment. First, we use DeepXplore and SADL to generate adver-

sarial examples, and mix them with original training data to retrain

the model. We reuse the parameters (e.g., ratio of new adversarial

examples) from the original papers. Second, we train the models

with adversarial training. More specifically, we use the PGD based

adversarial training. The parameters used in our retraining are

adopted from the original paper [41]. Then, we compare the model

effectiveness of the two sets of hardened models.

3.4.4 RQ: How are the different DNN coverage criteria correlated?

In software testing, there is a semi-lattice for the strength of the

different code coverage criteria. For example, statement coverage <

edge coverage < path coverage; and condition coverage that aims

to cover the true/false values of each comparative expression in a

predicate is stronger than statement coverage, weaker than path

coverage, and not comparable with edge coverage. We say criterion

𝐶1 is stronger than 𝐶2 if 100% 𝐶1 coverage must imply 100% 𝐶2

coverage. Such relations are important for choosing the appropriate

techniques in software testing. For example, path coverage may be

desired for safety critical code despite its high cost. In this research

question, we aim to look for correlation or even partial order among

the various DNN coverage criteria.

Experiment Design. To answer RQ 4, for a given model 𝐹 , we

keep adding new input samples to test the model, and gather the

coverage information to get a sequence of values for each test

criteria. For example, for NC, we can get a sequence of values

𝑁𝐶𝐹 = (𝑁𝐶𝐹
0 , 𝑁𝐶

𝐹
1 , 𝑁𝐶

𝐹
2 , ..., 𝑁𝐶

𝐹
𝑛) where n is the total number of

added input sample sets. Similarly, we can get 𝐾𝑀𝑁𝐶𝐹 , 𝑁𝐵𝐶𝐹 etc.

Then, we perform correlation analysis on these collected data 𝑁𝐶𝐹 ,

𝐾𝑀𝑁𝐶𝐹 , 𝑁𝐵𝐶𝐹 and so on to see if they have strong correlations

or partial order.

4 DNN MODEL QUALITY METRICS

In software testing, quality of software is often measured by the

number of bugs found within a certain period of time. The qual-

ity metrics of DNN models are more diverse. Most DNN testing

techniques draw analogy between bugs/defects in software code

and adversarial examples in DNN model. An adversarial example

is considered manifestation of some undesirable behavior of the

model, as it causes misclassification. Just like software quality met-

rics are based on bugs, model quality metrics are also centered

around adversarial examples. They fall into three categories: model

accuracy in the presence of adversarial examples, adversarial exam-

ple impreceptiblity that measures if an adversarial example looks

natural, and adversarial example robustness. These are the metrics

commonly used by adversarial machine learning [37, 39]. Details

are explained in the subsections.

4.1 Model Accuracy for Adversarial Examples

State-of-the-art adversarial example generation techniques, such as

C&W and PGD, optimize logits in order to generate inputs. Since

logits still have to go through a soft-max layer to produce the final

classification outputs, the generated adversarial examples may not

yield the intended mis-classification even though the optimizer can

successfully reach its objective. Model accuracy in the presence of

adversarial examples measures how often the generated adversarial

examples lead to correct classification results. High accuracy means

that the model is robust. The analogy in software testing is to

measure how often the subject software fails when it is stress tested.

Specifically, we consider the following metrics that are related to

model accuracy.

780

Correlations between Deep Neural Network Model Coverage Criteria and Model Quality ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

• Misclassification Ratio (MR).

𝑀𝑅 =
1

𝑁

𝑁∑

𝑖=1

𝑐𝑜𝑢𝑛𝑡 (F(𝑥𝑎𝑖) ≠ 𝑦𝑖)

Here, 𝑁 is the number of generated samples and 𝑐𝑜𝑢𝑛𝑡 () is a

function used to count the number of misclassified samples. Basi-

cally, MR calculates the percentage of misclassified input samples

in the whole input set. A high quality model has a low MR.

• Average Confidence of Adversarial Class (ACAC).

𝐴𝐶𝐴𝐶 =
1

𝑛

𝑛∑

𝑖=1

𝑃 (𝑥𝑎𝑖)𝐹 (𝑥𝑎𝑖)

where 𝑛 (𝑛 ≤ 𝑁) is the total number of adversarial examples

that cause misclassification. And 𝑃 (𝑥𝑎𝑖)𝐹 (𝑥𝑎𝑖)
is the prediction confi-

dence towards the incorrect class 𝐹 (𝑥𝑎𝑖). In general, ACACmeasures

the average prediction confidence towards the incorrect class for

adversarial examples.

• Average Confidence of True Class (ACTC).

𝐴𝐶𝑇𝐶 =
1

𝑛

𝑛∑

𝑖=1

𝑃 (𝑥𝑎𝑖)𝑦𝑖

Here 𝑛 (𝑛 ≤ 𝑁) is the total number of adversarial examples that

cause misclassification. 𝑃 (𝑥𝑎𝑖)𝑦𝑖 is the prediction confidence of true

classes for adversarial examples. Just like ACAC, ACTC measures

the prediction confidence of true classes for adversarial examples.

4.2 Adversarial Example Imperceptibility

This metric measures how realistic an adversarial example is in

human eyes. It is usually computed by using the original example

as a reference. A high quality adversarial example is one that has

imperceptible perturbation. We should not say a model is of low

quality is it is susceptible to low quality adversarial examples. The

analogy in software testing is that the subject software may fail

when it is provided with an input that substantially violates the

(implicit) input pre-conditions. In such cases, the induced failures

cannot be used as evidence of low software quality. Specifically, we

use the following metrics.

• Average 𝑳𝒑 Distortion (𝑨𝑳𝑫𝒑).

𝐴𝐿𝐷𝑝 =
1

𝑛

𝑛∑

𝑖=1

∥𝑥𝑎𝑖 − 𝑥𝑖 ∥𝑝

∥𝑥𝑖 ∥𝑝

Here, ∥ · ∥𝑝 is the ℓ𝑝 norm distance, which is adopted as distortion

metrics for evaluation. Specifically, ℓ0 calculates the number of

pixels changed by the perturbation; ℓ2 computes the Euclidean

distance between original examples and adversarial examples; ℓ∞
measures the maximum change in all dimensions of adversarial

examples. 𝐴𝐿𝐷𝑝 measures the average normalized ℓ𝑝 distortion for

all adversarial examples that cause misclassification. The smaller

the 𝐴𝐿𝐷𝑝 , the more imperceptibility the adversarial example has.

• Average Structural Similarity (ASS).

𝐴𝑆𝑆 =
1

𝑛

𝑛∑

𝑖=1

𝑆𝑆𝐼𝑀 (𝑥𝑎𝑖 , 𝑥𝑖)

Here, 𝑆𝑆𝐼𝑀 is the metric used to quantify the similarity between

two images [29]. ASS can measure the average 𝑆𝑆𝐼𝑀 between all

adversarial examples that cause misclassification and their corre-

sponding original examples. The larger the 𝑆𝑆𝐼𝑀 , the more imper-

ceptibility the adversarial examples has.

• Perturbation Sensitivity Distance (PSD).

𝑃𝑆𝐷 =
1

𝑛

𝑛∑

𝑖=1

𝑚∑

𝑗=1

𝛿𝑖, 𝑗𝑆𝑒𝑛(𝑅(𝑥𝑖, 𝑗)

Here𝑚 is the total number of pixels for an example, 𝛿𝑖, 𝑗 denotes

the 𝑗-th pixel of the 𝑖-th example, 𝑅(𝑥𝑖, 𝑗) represents the surround-

ing square region of 𝑥𝑖, 𝑗 , and 𝑆𝑒𝑛(𝑅(𝑥𝑖, 𝑗)) = 1/𝑠𝑡𝑑 (𝑅(𝑥𝑖, 𝑗)), with

𝑠𝑡𝑑 (𝑅(𝑥𝑖, 𝑗)) denoting the standard deviation function. 𝑃𝑆𝐷 evalu-

ates human perception of perturbations. The smaller the 𝑃𝑆𝐷 , the

more imperceptibility the adversarial example has.

4.3 Adversarial Example Robustness

In adversarial machine learning, adversarial example robustness

is often measured [34, 41, 61]. It measures the level of resilience a

successful adversarial example (i.e., a example that causes misclas-

sification) has in the presence of (input) perturbation. Intuitively,

an adversarial example that is not robust should not be used as

evidence of low model quality. The analogy in software testing is

that a transient failure (e.g., caused by non-deterministic factors)

may not indicate low software quality. In particular, we measure

the following.

• Noise Tolerance Estimation (NTE).

𝑁𝑇𝐸 =
1

𝑛

𝑛∑

𝑖=1

[𝑃 (𝑥𝑎𝑖)F(𝑥𝑎𝑖)
−𝑚𝑎𝑥{𝑃 (𝑥𝑎𝑖)𝑗 }]

Here, 𝑃 (𝑥𝑎𝑖)F(𝑥𝑎𝑖)
is the probability of misclassified class, and

𝑚𝑎𝑥{𝑃 (𝑥𝑎𝑖)𝑗 } is themax probability of all other classes, 𝑗 ∈ {1, ..., 𝑘},

𝑗 ≠ F(𝑥𝑎𝑖). 𝑁𝑇𝐸 measures the amount of noise adversarial exam-

ples can tolerate while keeping their misclassified label unchanged.

Intuitively, larger 𝑁𝑇𝐸 indicates more robust adversarial examples.

• Robustness to Gaussian Blur (RGB).

𝑅𝐺𝐵 =

𝑐𝑜𝑢𝑛𝑡 (F(GB(𝑥𝑎𝑖)) ≠ 𝑦𝑖)

𝑐𝑜𝑢𝑛𝑡 (F(𝑥𝑎𝑖) ≠ 𝑦𝑖)

WhereGB denotes the Gaussian blur function, an algorithm that

can reduce noises in images and 𝑐𝑜𝑢𝑛𝑡 () is used to count the number

of specific samples. 𝑅𝐺𝐵 counts how many adversarial examples

can maintain their misclassification function after Gaussian blur.

The greater the 𝑅𝐺𝐵 is, the more robust adversarial examples are.

• Robustness to Image Compression (RIC).

𝑅𝐼𝐶 =

𝑐𝑜𝑢𝑛𝑡 (F(IC(𝑥𝑎𝑖)) ≠ 𝑦𝑖

𝑐𝑜𝑢𝑛𝑡 (F(𝑥𝑎𝑖) ≠ 𝑦𝑖

Here, IC is a specific image compression function. Like 𝑅𝐺𝐵,

𝑅𝐼𝐶 counts how many adversarial examples can maintain their

misclassification function after the image compression function.

The greater the 𝑅𝐼𝐶 , the more robust the adversarial examples.

781

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA S. Yan, G. Tao, X. Liu, J. Zhai, S. Ma, L. Xu, X. Zhang

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

T₀ T₁ T₂ T₃ T₄ T₅ T₆ T₇ T₈ T₉ T₁₀

R
E

LA
T

IV
E

 C
O

V
E

R
A

G
E

NC(0.5) NC(0.7)

NC(0.9) TKNC

TKNP KMNC

NBC SNAC

Figure 2: Coverage VS. Training Datasets

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

TЅ TІ TЇ TЈ TЉ TЊ TЋ TЌ TЍ TЎ TІЅ

A
T

TA
C

K
 M

E
T

R
IC

S
 V

A
LU

E
S

MR ACAC ACTC NTE

ALP_LЅ ALP_Li ASS RGB

RIC ALP_LЇ PSD

Figure 3: Robustness VS. Training Datasets

5 EXPERIMENTS AND RESULTS

5.1 Setup

Datasets and Models. We use MNIST [32], CIFAR-10[48] and

SVHN[1] as our datasets. These are popular datasets used in the lit-

erature of model coverage [32, 39, 47, 71]. MNIST is a handwritten

digit recognition dataset, a popular dataset for image classifica-

tion. The CIFAR-10 dataset is widely used for easy image classi-

fication task/benchmark in the research community. It contains

60,000 32 × 32 color images in 10 different classes. The Street View

House Numbers (SVHN) dataset is obtained from house numbers in

Google Street View images. It consists of 73,257 training sasmples

and 26,032 testing samples. For MNIST, we use three pre-trained

LeNet family models, i.e., LeNet-1, LeNet-4, and LeNet-5 as the

baseline model. For CIFAR-10, we use VGG-16 [52] and ResNet-20

[27] models. For SVHN, we also use three CNN model, and their

model architectures are adopted from previous work [32]. We di-

rectly use pre-trained models if possible. Our trained models are

also available online [1].

Configurations. The configurations for coverage criteria is shown

in Table 1. For all research questions, we set the threshold for NC to

be 0.1, 0.3, 0.5, 0.7 and 0.9. For KMNC, the 𝑘 value (i.e., number of

multisections) we use is 10. For TKNP and TKNC, the 𝑘 value (i.e.,

the top-𝑘 neuron coverage) is 2. For LSC and DSC, the layers we

analyze are shown in column 6 in Table 1, the numbers of buckets

for LSC and DSC are shown in columns 7 and 9, respectively, and the

upper bounds of SA are shown in columns 8 and 10, respectively.

These are the same settings published in the original papers or

published in their open source repository. For C&W attacks, we

use the implementation from CleverHans and use their default

MR
AC
AC

AC
TC

AL
P_L
0
AL
P_L
2
AL
P_L
i
AS
S

PS
D

NT
E

RG
B RIC

NC
(0.
1)

NC
(0.
3)

NC
(0.
5)

NC
(0.
7)

NC
(0.
9)

TK
NC

TK
NP

KM
NC

NB
C

SN
AC

DS
A

LSA

0.2 0.2 -0.3 -0.1 0.2 -0.2 -0.2 0.2 0.3 0.3 0.2

0.2 0.1 -0.2 0.1 0 -0.2 0 0.1 0.2 0.2 0.3

0.2 0.4 -0.4 0.1 0 -0.2 0.1 0.1 0.4 0.3 0.1

0 -0.2 0.2 -0.1 -0.2 -0.1 0.1 -0.2 -0.2 0 -0.2

-0.2 0 0.2 -0.1 0 0.1 0.1 -0.2 0 -0.1 -0.3

-0.2 0.2 0 0 0.1 0.3 0 -0.1 0.1 -0.1 -0.1

0.2 -0.2 -0.1 0.1 -0.1 -0.3 -0.1 0.1 -0.1 0.3 0

0.1 -0.2 0.1 0 -0.4 -0.4 0.1 -0.2 -0.2 0.2 -0.3

0.1 -0.2 0.1 0.2 -0.4 -0.4 0.1 -0.2 -0.2 0.2 -0.3

0.1 -0.3 0.1 0.1 -0.4 -0.3 0.1 -0.2 -0.2 0.1 -0.3

0.2 0 0 -0.1 0 0 -0.2 0 0 0 -0.2

0.1 0 -0.2 0.2 -0.1 -0.3 0.1 0.2 0.1 0.1 0.2 −1.0

−0.5

0.0

0.5

1.0

Figure 4: Correlation of Coverage Criteria and Robustness

parameters. For PDG attack and PDG based adversarial training, we

also use the default parameters used in their paper and repository.

5.2 Results and Analysis

5.2.1 RQ: Are DNN coverage metrics correlated with DNN model

robustness? As mentioned in subsection 3.4, to answer RQ1, we

obtain a set of new training suites, 𝑇1, ...,𝑇𝑛 . Each one has more

training data that can enlarge the coverage metrics. In our experi-

ment, we obtain 11 training datasets in total for each model (i.e.,

𝑛 = 10) including the original one (i.e.,𝑇0). In each step, we add 250

new images to the dataset, thus in total we add 2,500 new training

images to the training dataset. Compared with DeepXplore and

SADL, it introduces more new training samples.

Figure 2 shows the coverage metric value changes w.r.t. different

training datasets. In this graph, the y-axis is the relative coverage

value and the base value we use is the one obtained on 𝑇0. This is

because the results are in wide value ranges. For example, TKNP

is an absolute number whose value is larger than a few thousand,

and many others are ratios whose value range is [0, 1]. For NC,

we only show lines with threshold values being 0.5, 0.7 and 0.9.

This is because for 0.1 and 0.3, the original dataset 𝑇0 can achieve

100% coverage. For some metrics, the original coverage values are

already very high (over 98%), and hence in the graph, it does not

show significant growth. Overall, we can see that with new training

samples, all coverage metrics are growing.

Figure 3 shows the changes of attack metrics (i.e., model robust-

ness) w.r.t. different training datasets. Similarly, the values are also

normalized based on the values obtained in 𝑇5 (for better visualiza-

tion). For MR, ACAC, 𝐴𝐿𝐷𝑝 and PSD, larger y values indicate less

robust. While for ACTC, ASS, NTE, RGB and RIC, a larger y value

always indicates a more robust model. From the graph, we observe

that none of them is monotonous. It means from the attack’s

point of view, adding new samples to improve coverage does not

always lead to the improvement of model robustness.

Due to the space limit, Figure 2 and Figure 3 show the results for

theMNIST dataset on the LeNet-1 model. Other models and datasets

782

Correlations between Deep Neural Network Model Coverage Criteria and Model Quality ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

Table 1: Configurations for RQs

Dataset Model
NC

(threshold)
KMNC
(k)

TKNC/TKNP
(k)

LSC DSC

Layer n ub n ub

MNIST
LeNet-1 0.1, 0.3, 0.5, 0.7, 0.9 10 2 conv_2 1000 2000 1000 5
LeNet-4 0.1, 0.3, 0.5, 0.7, 0.9 10 2 conv_2 1000 2000 1000 5
LeNet5 0.1, 0.3, 0.5, 0.7, 0.9 10 2 conv_2 1000 2000 1000 5

CIFAR
VGG-16 0.1, 0.3, 0.5, 0.7, 0.9 10 2 conv_2 1000 2000 1000 5
ResNet-20 0.1, 0.3, 0.5, 0.7, 0.9 10 2 block2_conv1 1000 2000 1000 5

SVHN
SADL-1 0.1, 0.3, 0.5, 0.7, 0.9 10 2 pool_1 1000 2000 1000 5
SALD-2 0.1, 0.3, 0.5, 0.7, 0.9 10 2 pool_1 1000 2000 1000 5
SALD-3 0.1, 0.3, 0.5, 0.7, 0.9 10 2 pool_1 1000 2000 1000 5

Table 2: Comparison of Attack Images

Dataset Model
MR ℓ∞

𝐷𝐻 𝐷𝑃 𝐷𝐻 𝐷𝑃

MNIST
LeNet-1 92.5% 100% 0.986 0.3
LeNet-4 90.0% 100% 0.983 0.3
LeNet-5 84.3% 100% 0.963 0.3

CIFAR
VGG-16 94.4% 88.7% 3.114 0.031
ResNet-20 94.4% 99.8% 3.242 0.031

SVHN
SADL-1 61.7% 100% 0.689 0.031
SADL-2 92.4% 99.9% 0.714 0.031
SADL-3 64.4% 100% 0.675 0.031

do have a similar pattern. Our generated datasets, trained models,

and original results are available in GitHub [1]. To have a better

understanding of whether coverage criteria are correlated with

robustness, we also perform a correlation analysis on all trained

models and datasets using the Kendall’s 𝜏 method, which is a stan-

dard statistical method used to measure the linear and non-linear

relationships between two different variables. The result is shown

in Figure 4. In this figure, each label in x-axis represents one attack

criterion and each label in y-axis represents one coverage criterion.

Each cell represents the correlation between criteria. We use blue

color to represent negative correlation (i.e., variables change in

opposite directions) and red labels to represent positive correlation

(i.e., both variables change in the same direction). According to the

definition of correlation in Guildford scale [24], if the correlation is

less than 0.4, the positive or negative correlation is low; values in

[0.4, 0.7] indicate that the correlation is moderate; and high corre-

lation values (i.e., 0.7∼0.9 or above 0.9) represent strong correlation.

As we can see, most cells are in light colors and have low correlation

values, indicating neutral correlations. In other words, there is no

clear relationship between these variables.

5.2.2 RQ: Is coverage driven test generation effective in disclosing

DNN defects? How does it compare to the other commonly used adver-

sarial example generation techniques? We utilize DeepHunter [71]

and PDG [41] to generate test cases, D𝐻 and D𝑃 , respectively,

against the same DNN model. For D𝐻 and D𝑃 , we first compare

the attack success rate using MR. For each method and each model,

we generate 1,000 images and then test MR. For both methods, we

limit the ℓ∞ by using the default value provided by DeepHunter [71]

(i.e., 0.2 ∗ 255). The results are shown in columns 3 and 4 in Ta-

ble 2. As we can see, PGD achieves almost 100% success rate on

all models and datasets, while DeepHunter achieves lower success

rate (i.e., lower MR value, about 60% for SADL-1 and SADL-3 model

and about 90% for other models). We also compare the quality of

the generated adversarial examples by calculating the average ℓ∞
distances of benign inputs and adversarial examples. The results

are shown in columns 5 to 6 in Table 2. The average ℓ∞ distances

for PGD (D𝑃) is 3 to 100 times smaller than that of DeepHunter

(D𝐻), indicating that the adversarial image quality generated by

PGD is better than DeepHunter. In Figure 5, we show the original

images (Figure 5a), attack images by DeepHunter (Figure 5b) and

PGD (Figure 5c), respectively. The reason why DeepHunter has

larger ℓ∞ perturbation is because of the affine transformations it

uses, which results in larger ℓ∞ values but maintains the semantics.

In this sense, ℓ∞ distance is not an ideal metric to use, and how to

(a) Original Images (b) DeepHunter (c) PGD

Figure 5: Generated Adversarial Examples

0

2000

4000

6000

8000

0

0.2

0.4

0.6

0.8

1

0

4
0

1

1
0

0
1

1
6

0
1

2
2

0
1

2
8

0
1

3
4

0
1

4
0

0
1

4
6

0
1

5
2

0
1

5
8

0
1

6
4

0
1

7
0

0
1

7
6

0
1

8
2

0
1

8
8

0
1

9
4

0
1

T
K

N
P

 V
A

L
U

E

C
O

V
E

R
A

G
E

 V
A

L
U

E
S

NEW SAMPLES

NC KMNC

NBC SNAC

TKNC TKNP

Figure 6: Coverage VS. # Adversarial Examples

choose a better metric is out of the scope. Here, we use it because it

is used by both PGD and DeepHunter to determine if the generated

example is a valid input.

To understand how PGD generated adversarial examples corre-

late with coverage criteria, we also calculate the coverage metric

value change by adding 10 images in each single step. The result is

shown in Figure 6. The primary y-axis shows the percentage for

ratio values (i.e., NC, KMNC, NBC, SNAC, TKNC) and the second

y-axis shows the value for TKNP. From the graph we can see that

the lines for NC, NBC, KMNC, SNAC and TKNC show a similar

pattern: they grow rapidly at the beginning and then plateau af-

terwards. This tells us that new adversarial examples do increase

the coverage. However, adversarial examples may not necessarily

increase coverage. To future demonstrate this, we use adaptive

gradient based attacks to limit the coverage change during opti-

mization while generating the adversarial examples. The results

show that it can still generate adversarial examples with almost

100% success rate on all models and datasets.

On the other hand, TKNP shows a almost linear relationship

with the number of new samples. To further study this, we design

another experiment, which is to calculate the growth of these cov-

erage metrics when we add benign samples instead of adversarial

sample. In our case, we fix the setting (i.e., 𝑘 = 2), and then we

783

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA S. Yan, G. Tao, X. Liu, J. Zhai, S. Ma, L. Xu, X. Zhang

0

2000

4000

6000

8000
1

6
0
1

1
2
0
1

1
8
0
1

2
4
0
1

3
0
0
1

3
6
0
1

4
2
0
1

4
8
0
1

5
4
0
1

6
0
0
1

6
6
0
1

7
2
0
1

7
8
0
1

8
4
0
1

9
0
0
1

9
6
0
1

T
K
N
P
V
A
LU

E

NEW SAMPLES

adv_TKNP

benign_TKNP

Figure 7: TKNP VS. # New Inputs

Table 3: Model Accuracy under Different Scenarios

Dataset Model Benign 𝐷𝐻 PGD

MNIST

LeNet-1 98.7%(+0.09%) 90.3%(+2.37%) 0%(+0%)
LeNet-4 98.7%(+0.07%) 90.1%(+2.3%) 0%(+0%)
LeNet-5 98.71%(-0.26%) 91%(+1.1%) 0%(+0%)

LeNet-1 Adv. 97.6%(-1.07%) 91.3%(+3.4%) 19.2%(+19.2%)
LeNet-4 Adv. 96.9%(-1.72%) 88.9%(+1.1%) 9.6%(+9.6%)
LeNet-5 Adv. 97%(-1.97%) 90.1%(+0.2%) 30.5%(30.3%)

CIFAR

VGG-16 10%(-82.8%) 9.89%(-47.41%) 9.99%(+8.8%)
ResNet-20 75.4%(-16.4%) 60.5%(+1.4%) 0.13%(+0.13%)

VGG-16 Adv. 87.8%(-5%) 55.9%(-1.4%) 40.9%(+39.7%)
ResNet-20 Adv. 86.7%(-5.04%) 57.5%(-1.7%) 36.6%(+36.6%)

SVHN

SADL-1 93.97%(+4.27%) 82.95%(+6.9%) 0%(+0%)
SADL-2 91.55%(+3.83%) 77.65%(+5.9%) 0.1%(+0.1%)
SADL-3 94.28%(+1.71%) 84.47%(+5.1%) 1.1%(+1.1%)

SADL-1 Adv. 85.8%(-3.9%) 71.25%(-4.8%) 46.6%(+46.6%)
SADL-2 Adv. 81.7%(-6.12%) 66.73%(-4.8%) 44.6%(+44.6%)
SADL-3 Adv. 87.7%(-4.87%) 74.13%(-5.23%) 50.6%(+50.6%)

add the corresponding seed input as the new sample. The results

is shown in Figure 7. As we can see, adding benign samples and

adding adversarial samples have almost the same effects, indicat-

ing that this criteria cannot really distinguish the differences of

benign samples and adversarial samples. In other words, it is almost

equivalent to the count of samples.

5.2.3 RQ: Are the adversarial examples generated by DNN coverage

based testing effective in improving model robustness? How are they

compared to those generated by popular gradient descent based tech-

niques? To answer RQ3, we retrain the models using two different

approaches: for one set, we use the adversarial examples gener-

ated by coverage guided testing, and for the other set, we use PGD

based adversarial training. The results are shown in Table 3. The

first column shows the datasets. The second column presents the

models including those retrained with coverage guided adversarial

examples (rows 2-4, 8-9, 12-14) and those retrained by PGD (rows

5-7, 10-11, 15-17). For each model, we show the accuracy on benign

samples, adversarial examples generated by coverage guidance and

under PGD attack. In each cell, we show the model accuracy as

well as the difference compared with the original model (without

retraining). Numbers with +means that the accuracy is higher than

the original model and numbers with − means that the model accu-

racy is lower than the original one. From the table, we can see that

most models with the same architecture have similar accuracy on

benign testing datasets (which is also similar to the original model

accuracy). In some cases, PGD based adversarial training gets lower

NC
(0.
1)

NC
(0.
3)

NC
(0.
5)

NC
(0.
7)

NC
(0.
9)
TK
NC TK

NP
KM
NC NB

C
SN
AC DS

A LSA

NC
(0.
1)

NC
(0.
3)

NC
(0.
5)

NC
(0.
7)

NC
(0.
9)

TK
NC

TK
NP

KM
NC

NB
C

SN
AC

DS
A

LSA

0.69

0.29 0.42

0.22 0.32 0.05

-0.26-0.35-0.03 0.27

-0.13-0.16-0.0690.19 0.4

0.11 0.1 0.01 -0.16-0.46-0.46

0.15 0.1 0.0930.18 -0.12-0.28 0.44

0.14 0.25 0.16 0.21 -0.16-0.28 0.44 0.79

0.11 0.22 0.14 0.21 -0.14-0.27 0.43 0.77 0.94

0.09 -0.08 0.04 0.02 0.250.057-0.01 0.08 0.04 0.04

0.26 0.38 0.12 -0.24-0.57-0.39 0.43 0.17 0.25 0.2 -0.21
−1.0

−0.5

0.0

0.5

1.0

Figure 8: Correlation between Coverage Criteria

accuracy on benign testing datasets. This is mainly because adver-

sarial training is hard to converge [66]. We trained several versions

and got similar results. A similar issue happened for VGG-16 model

on the CIFAR dataset. We found that images generated by Deep-

Hunter have significantly large perturbations, and the re-training

process is difficult to converge.

Most models also have a higher accuracy (compared with the

original models) on the adversarial examples generated by cover-

age guided testing. VGG-16 on CIFAR-10 does not converge and

that is why the model accuracy is low. We find that adversarial

training does not necessarily improve the model accuracy against

such images. For example, all three models on SVHN end up with

a lower accuracy on this dataset. One more finding is that models

retrained with coverage guided testing has nearly 0% accuracy un-

der PGD attack, while PGD based adversarial training increases the

model accuracy by 30% for most cases. This indicates that coverage

criteria guided retraining can improve model robustness under at-

tacks that use the same image perturbation strategy, but does not

increase the model robustness under gradient based attacks. Simi-

larly, PGD based retraining can improve model accuracy against

PGD attacks but cannot improve its accuracy against adversarial

inputs generated by coverage guided methods.

5.2.4 RQ: How are the different DNN coverage criteria correlated? If

the coverage criteria have partial order relationship, they ought to

be correlated. Thus, we first analyze the correlation among all the

coverage criteria. The results are shown in Figure 8. The meaning

of the graph is the same as Figure 4. From the graph, we can see that

NBC and SNAC are correlated with each other with high strength,

whereas they have weak or no correlation with the other metrics.

NC, KNC, TKNC, LSA and DSA are also correlated with each other

to a certain degree, but they do not show very strong correlations.

Such results are also consistent with existing work [14, 32, 39].

6 THREAT TO VALIDITY AND DISCUSSION

Threat to Validity. First, most existing coverage criteria focuses

on DNN based image classifications, and so is this work. Second,

the results are acquired with a limited set of models, data sets and

784

Correlations between Deep Neural Network Model Coverage Criteria and Model Quality ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

specific training hyper parameter settings. They may not be repre-

sentative for other models or settings. To mitigate the threat, we

publish all the setup details, implementation, data (e.g., the gener-

ated tests) at [1] for reproduction. Third, our study is largely based

on existing model coverage criteria and test generation techniques.

A possible threat is that we may not faithfully reproduce these

existing works. To mitigate the threat, we use the models, datasets

and implementations (when available) from the original papers.

We also validate our results by cross-checking with those in the

original papers.

Discussion and suggestions. According to results from RQ2 and

RQ3, we know that it is relatively easy to generate adversarial even

when the model has achieve over 100% coverage. This is different

from traditional software testing where software are generally less

vulnerable after achieving high coverage. This brings the doubt

about the usefulness of existing coverage criteria in DNN testing.

However, we are uncertain if there will be other coverage criteria

that shows a very positive correlation with DNN robustness.

One important message from this study is that our community

shall establish a set of standards for evaluating future proposals.

They shall include testing various model properties (e.g., robustness,

accuracy and fairness), and cover various model architectures and

tasks so that the results can be comparable. As an initial step, we

have create a GitHub reposotiry [2] for this purpose, and strongly

encourage our readers to contribute.

7 RELATED WORK

DNN Testing and Validation. The relationship between cover-

age and DNN testing has been studied by others as well. Dong et

al. [14] show that there is limited correlation between coverage and

robustness for DNNs. Li et al. [36] argues that previously reported

fault-detection łcapabilitiesž conjectured from high coverage test-

ing are more likely due to the adversary-oriented search but not

the real łhighž coverage itself.

Besides coverage criteria, A large body of testing methods was

proposed for testing machine learning models, such as fuzzing [18,

25, 44, 62, 63, 68, 71, 80], symbolic execution [3, 23, 51, 55], runtime

validation [54, 64], fairness testing [3, 62, 77], etc. DeepTest [59]

utilizes nine types of realistic image transformations for generating

test images, which discovered more than 1,000 erroneous behav-

iors of DNNs used in autonomous driving systems. DeepRoad [76]

leverages generative adversarial networks (GANs) to generate test

cases simulating different weather conditions. DeepBillboard [79]

manipulates contents on billboards to cause wrong steering an-

gles of autonomous driving systems. DeepImportance [20] selects

important neurons from pre-trained models and clusters those neu-

rons with respect to their value regions. The coverage of those

important neurons is then used for testing model behaviors. Model

testing has also been applied on other domains such as automatic

speech recognition [15], text classification [62], image classifica-

tion [55, 60], machine translation [28, 56]. More related works can

be found in this survey [75].

To validate safety of DNN models, researchers leverage verifi-

cation techniques to provide formal guarantees [19, 22, 31, 46, 48,

49, 65, 68]. Reluplex [31] transforms DNN models to numerical

constraints and utilizes SMT-solver to verify robustness of DNNs.

Models evaluated in Reluplex were small with 8 layers and 300 ReLU

nodes. DeepSafe [22] was built on Reluplex and cannot scale to

large models. ReluVal [65] leverages interval arithmetic to verify ro-

bustness of DNNs, which is 200 times faster than Reluplex. AI2 [49]

uses abstract interpretation to approximate the data region after

ReLU activation function. Due to its over-approximation nature,

AI2 may fail to verify an input which has certain property. Deep-

Poly [53] combines floating point polyhedron with intervals, which

can scale to large models. DISSECTOR [64] generates sub-models

for intermediate layers of original models and validates given inputs

by measuring prediction probabilities from sub-models.

Adversarial Machine Learning. The vulnerability of machine

learning models has been an extensively discussed topic [8, 10, 12,

21, 38, 40, 57, 58, 69, 78]. As we elaborate in subsection 2.2 that

an attacker can use gradient to perturb original inputs to induce

misclassification of DNNs. There also exist other types of adver-

saries such as black-box attacks [8], back-door attacks [38], etc. A

lot of defense mechanisms were proposed to mitigate the threat

of adversarial examples such as input transformations [70, 72], dif-

ferential certificate [50], adversarial training [34, 41, 61], model

internal checking [40, 58], etc. More details regarding attacks and

defenses can be found in these papers [4, 74].

DNN testing techniques have also been applied on generating

counterexamples. The proposed neuron coverage based metrics

were utilized to guide the search [32, 39, 47]. In this paper, we

study the relationship between those coverage based metrics and

adversarial examples in RQ2. We also leverage adversarial training

approach to study the robustness of DNN models trained with

coverage based examples and gradient based ones, respectively (see

details in RQ3).

8 CONCLUSION

In this paper, we study existing neural network coverage criteria,

and find that they are not correlated with model robustness. Al-

though they can be used for adversarial example generation and

improve model robustness in limited scenarios (i.e., attackers use

the same perturbation strategy), they tend to generate adversarial

examples that have substantial perturbations and hence perceptible

by humans. In contrast, existing optimization based adversarial

example generation techniques can generate less perceptible ex-

amples. There are correlations between existing coverage criteria.

However, it remains unclear if they have partial order relations as

code coverage criteria. Our experiments and data are public for

reproduction and validation.

ACKNOWLEDGMENTS

We sincerely thank the anonymous reviewers for their constructive

comments, feedbacks and suggestions. We also thank the authors

of tools used in this paper for their open source efforts, without

which this research is impossible. This research was supported, in

part by NSF China No.61802166, DARPA FA8650-15-C-7562, NSF

1748764, NSF 1901242, NSF 1910300, ONR N000141410468, ONR

N000141712947, and Sandia National Lab under award 1701331.

Any opinions, findings, and conclusions made in this paper are

those of the authors only and do not necessarily reflect the views

of our sponsors.

785

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA S. Yan, G. Tao, X. Liu, J. Zhai, S. Ma, L. Xu, X. Zhang

REFERENCES
[1] 2020. DNNTesting/CovTesting. https://github.com/RU-System-Software-and-

Security/CovTesting. (Accessed on 09/10/2020).
[2] 2020. SE4DL Benchmark. https://github.com/RU-System-Software-and-Security/

Benchmark.
[3] Aniya Aggarwal, Pranay Lohia, Seema Nagar, Kuntal Dey, and Diptikalyan Saha.

2019. Black box fairness testing of machine learning models. In Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. 625ś635.

[4] Anish Athalye, Nicholas Carlini, and David Wagner. 2018. Obfuscated Gradients
Give a False Sense of Security: Circumventing Defenses to Adversarial Examples.
In International Conference on Machine Learning. 274ś283.

[5] Arthur Baars, Mark Harman, Youssef Hassoun, Kiran Lakhotia, Phil McMinn,
Paolo Tonella, and Tanja Vos. 2011. Symbolic search-based testing. In 2011 26th
IEEE/ACM International Conference on Automated Software Engineering (ASE 2011).
IEEE, 53ś62.

[6] Antonia Bertolino. 2007. Software testing research: Achievements, challenges,
dreams. In Future of Software Engineering (FOSE’07). IEEE, 85ś103.

[7] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2017. Coverage-
based greybox fuzzing asmarkov chain. IEEE Transactions on Software Engineering
45, 5 (2017), 489ś506.

[8] Wieland Brendel, Jonas Rauber, and Matthias Bethge. 2018. Decision-based
adversarial attacks: Reliable attacks against black-box machine learning models.
In International Conference on Learning Representations (ICLR).

[9] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: unassisted
and automatic generation of high-coverage tests for complex systems programs.
In Proceedings of the 8th USENIX conference on Operating systems design and
implementation. USENIX Association, 209ś224.

[10] Nicholas Carlini and David Wagner. 2017. Adversarial examples are not eas-
ily detected: Bypassing ten detection methods. In Proceedings of the 10th ACM
Workshop on Artificial Intelligence and Security. 3ś14.

[11] Nicholas Carlini and David Wagner. 2017. Towards Evaluating the Robustness of
Neural Networks. In IEEE Symposium on Security and Privacy (S&P). 39ś57.

[12] Sen Chen, Minhui Xue, Lingling Fan, Shuang Hao, Lihua Xu, Haojin Zhu, and
Bo Li. 2018. Automated poisoning attacks and defenses in malware detection
systems: An adversarial machine learning approach. computers & security 73
(2018), 326ś344.

[13] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011. S2E: A
platform for in-vivo multi-path analysis of software systems. ACM Sigplan
Notices 46, 3 (2011), 265ś278.

[14] Yizhen Dong, Peixin Zhang, Jingyi Wang, Shuang Liu, Jun Sun, Jianye Hao, Xinyu
Wang, Li Wang, Jin Song Dong, and Dai Ting. 2019. There is Limited Correlation
between Coverage and Robustness for Deep Neural Networks. arXiv preprint
arXiv:1911.05904 (2019).

[15] Xiaoning Du, Xiaofei Xie, Yi Li, Lei Ma, Yang Liu, and Jianjun Zhao. 2019. Deep-
stellar: model-based quantitative analysis of stateful deep learning systems. In
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 477ś487.

[16] Irwin S Dunietz, Willa K Ehrlich, BD Szablak, Colin L Mallows, and Anthony
Iannino. 1997. Applying design of experiments to software testing: experience
report. In Proceedings of the 19th international conference on Software engineering.
205ś215.

[17] Gordon Fraser and Andrea Arcuri. 2012. Sound empirical evidence in software
testing. In 2012 34th International Conference on Software Engineering (ICSE). IEEE,
178ś188.

[18] Xiang Gao, Ripon Saha, Mukul Prasad, and Roychoudhury Abhik. 2020. Fuzz
Testing based Data Augmentation to Improve Robustness of Deep Neural Net-
works. In 2020 IEEE/ACM 42nd International Conference on Software Engineering
(ICSE). IEEE.

[19] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat
Chaudhuri, and Martin Vechev. 2018. Ai2: Safety and robustness certification of
neural networks with abstract interpretation. In 2018 IEEE Symposium on Security
and Privacy (SP). IEEE, 3ś18.

[20] Simos Gerasimou, Hasan Ferit Eniser, Alper Sen, and Alper Cakan. 2020.
Importance-Driven Deep Learning System Testing. In 2020 IEEE/ACM 42nd Inter-
national Conference on Software Engineering (ICSE). IEEE.

[21] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining
and Harnessing Adversarial Examples. In International Conference on Learning
Representations (ICLR).

[22] Divya Gopinath, Guy Katz, Corina S Pasareanu, and Clark Barrett. 2017. Deepsafe:
A data-driven approach for checking adversarial robustness in neural networks.
arXiv preprint arXiv:1710.00486 (2017).

[23] Divya Gopinath, Corina S Pasareanu, KaiyuanWang, Mengshi Zhang, and Sarfraz
Khurshid. 2019. Symbolic execution for attribution and attack synthesis in neural
networks. In 2019 IEEE/ACM 41st International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion). IEEE, 282ś283.

[24] Joy Paul Guilford. 1950. Fundamental statistics in psychology and education.
(1950).

[25] Jianmin Guo, Yu Jiang, Yue Zhao, Quan Chen, and Jiaguang Sun. 2018. Dlfuzz: Dif-
ferential fuzzing testing of deep learning systems. In Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 739ś743.

[26] Mark Harman and Phil McMinn. 2009. A theoretical and empirical study of
search-based testing: Local, global, and hybrid search. IEEE Transactions on
Software Engineering 36, 2 (2009), 226ś247.

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770ś778.

[28] Pinjia He, Clara Meister, and Zhendong Su. 2020. Structure-Invariant Testing
for Machine Translation. In 2020 IEEE/ACM 42nd International Conference on
Software Engineering (ICSE). IEEE.

[29] Alain Hore and Djemel Ziou. 2010. Image quality metrics: PSNR vs. SSIM. In
2010 20th International Conference on Pattern Recognition. IEEE, 2366ś2369.

[30] René Just, Darioush Jalali, Laura Inozemtseva, Michael D Ernst, Reid Holmes, and
Gordon Fraser. 2014. Are mutants a valid substitute for real faults in software
testing?. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. 654ś665.

[31] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer.
2017. Reluplex: An efficient SMT solver for verifying deep neural networks. In
International Conference on Computer Aided Verification. Springer, 97ś117.

[32] Jinhan Kim, Robert Feldt, and Shin Yoo. 2019. Guiding deep learning system
testing using surprise adequacy. In 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE). IEEE, 1039ś1049.

[33] D Richard Kuhn, Dolores R Wallace, and Albert M Gallo. 2004. Software fault
interactions and implications for software testing. IEEE transactions on software
engineering 30, 6 (2004), 418ś421.

[34] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. 2017. Adversarial Machine
Learning at Scale. In International Conference on Learning Representations (ICLR).

[35] Hareton KN Leung and LeeWhite. 1989. Insights into regression testing (software
testing). In Proceedings. Conference on Software Maintenance-1989. IEEE, 60ś69.

[36] Zenan Li, Xiaoxing Ma, Chang Xu, and Chun Cao. 2019. Structural coverage
criteria for neural networks could be misleading. In 2019 IEEE/ACM 41st Inter-
national Conference on Software Engineering: New Ideas and Emerging Results
(ICSE-NIER). IEEE, 89ś92.

[37] Xiang Ling, Shouling Ji, Jiaxu Zou, JiannanWang, ChunmingWu, Bo Li, and Ting
Wang. 2019. Deepsec: A uniform platform for security analysis of deep learning
model. In 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 673ś690.

[38] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, WeihangWang,
and Xiangyu Zhang. 2018. Trojaning Attack on Neural Networks. In Proceedings
of the 25nd Annual Network and Distributed System Security Symposium (NDSS).

[39] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chun-
yang Chen, Ting Su, Li Li, Yang Liu, et al. 2018. Deepgauge: Multi-granularity
testing criteria for deep learning systems. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. 120ś131.

[40] Shiqing Ma, Yingqi Liu, Guanhong Tao, Wen-Chuan Lee, and Xiangyu Zhang.
2019. NIC: Detecting Adversarial Samples with Neural Network Invariant Check-
ing.. In Proceedings of the 25nd Annual Network and Distributed System Security
Symposium (NDSS).

[41] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. 2018. Towards deep learningmodels resistant to adversarial attacks.
In International Conference on Learning Representations (ICLR).

[42] David Martin, John Rooksby, Mark Rouncefield, and Ian Sommerville. 2007.
’Good’organisational reasons for’Bad’software testing: An ethnographic study of
testing in a small software company. In 29th international conference on software
engineering (ICSE’07). IEEE, 602ś611.

[43] Glenford J Myers, Corey Sandler, and Tom Badgett. 2011. The art of software
testing. John Wiley & Sons.

[44] Augustus Odena, Catherine Olsson, David Andersen, and Ian Goodfellow. 2019.
TensorFuzz: Debugging Neural Networks with Coverage-Guided Fuzzing. In
International Conference on Machine Learning. 4901ś4911.

[45] A Jefferson Offutt. 1992. Investigations of the software testing coupling effect.
ACM Transactions on Software Engineering and Methodology (TOSEM) 1, 1 (1992),
5ś20.

[46] Brandon Paulsen, Jingbo Wang, and Chao Wang. 2020. ReluDiff: Differential
Verification of Deep Neural Networks. In 2020 IEEE/ACM 42nd International
Conference on Software Engineering (ICSE). IEEE.

[47] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. Deepxplore: Au-
tomated whitebox testing of deep learning systems. In proceedings of the 26th
Symposium on Operating Systems Principles. 1ś18.

[48] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. Towards practical
verification of machine learning: The case of computer vision systems. arXiv
preprint arXiv:1712.01785 (2017).

[49] Luca Pulina andArmando Tacchella. 2010. An abstraction-refinement approach to
verification of artificial neural networks. In International Conference on Computer
Aided Verification. Springer, 243ś257.

786

https://github.com/RU-System-Software-and-Security/CovTesting
https://github.com/RU-System-Software-and-Security/CovTesting
https://github.com/RU-System-Software-and-Security/Benchmark
https://github.com/RU-System-Software-and-Security/Benchmark

Correlations between Deep Neural Network Model Coverage Criteria and Model Quality ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

[50] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. 2018. Certified defenses
against adversarial examples. In International Conference on Learning Representa-
tions.

[51] Arvind Ramanathan, Laura L Pullum, Faraz Hussain, Dwaipayan Chakrabarty,
and Sumit Kumar Jha. 2016. Integrating symbolic and statistical methods for
testing intelligent systems: Applications tomachine learning and computer vision.
In 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
786ś791.

[52] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[53] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. 2019. An
abstract domain for certifying neural networks. Proceedings of the ACM on
Programming Languages 3, POPL (2019), 1ś30.

[54] Andrea Stocco, Michael Weiss, Marco Calzana, and Paolo Tonella. 2020. Misbe-
haviour Prediction for Autonomous Driving Systems. In 2020 IEEE/ACM 42nd
International Conference on Software Engineering (ICSE). IEEE.

[55] Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska, and
Daniel Kroening. 2018. Concolic testing for deep neural networks. In Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software Engineering.
109ś119.

[56] Zeyu Sun, Jie M Zhang, Mark Harman, Mike Papadakis, and Lu Zhang. 2020.
Automatic Testing and Improvement of Machine Translation. In 2020 IEEE/ACM
42nd International Conference on Software Engineering (ICSE). IEEE.

[57] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. 2014. Intriguing Properties of Neural Networks.
In International Conference on Learning Representations (ICLR).

[58] Guanhong Tao, Shiqing Ma, Yingqi Liu, and Xiangyu Zhang. 2018. Attacks meet
interpretability: Attribute-steered detection of adversarial samples. In Advances
in Neural Information Processing Systems. 7717ś7728.

[59] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. Deeptest: Automated
testing of deep-neural-network-driven autonomous cars. In Proceedings of the
40th international conference on software engineering. 303ś314.

[60] Yuchi Tian, Ziyuan Zhong, Vicente Ordonez, Gail Kaiser, and Baishakhi Ray. 2020.
Testing DNN Image Classifier for Confusion & Bias Errors. In 2020 IEEE/ACM
42nd International Conference on Software Engineering (ICSE). IEEE.

[61] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh,
and Patrick McDaniel. 2018. Ensemble adversarial training: Attacks and defenses.
In International Conference on Learning Representations.

[62] Sakshi Udeshi, Pryanshu Arora, and Sudipta Chattopadhyay. 2018. Automated
directed fairness testing. In Proceedings of the 33rd ACM/IEEE International Con-
ference on Automated Software Engineering. 98ś108.

[63] Jonathan Uesato, Ananya Kumar, Csaba Szepesvari, Tom Erez, Avraham Rud-
erman, Keith Anderson, Nicolas Heess, Pushmeet Kohli, et al. 2018. Rigorous
agent evaluation: An adversarial approach to uncover catastrophic failures. arXiv
preprint arXiv:1812.01647 (2018).

[64] Huiyan Wang, Jingwei Xu, Chang Xu, Xiaoxing Ma, and Jian Lu. 2020. DIS-
SECTOR: Input Validation for Deep Learning Applications by Crossing-layer
Dissection. In 2020 IEEE/ACM 42nd International Conference on Software Engi-
neering (ICSE). IEEE.

[65] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. 2018.
Formal security analysis of neural networks using symbolic intervals. In 27th

{USENIX} Security Symposium ({USENIX} Security 18). 1599ś1614.
[66] Yisen Wang, Xingjun Ma, James Bailey, Jinfeng Yi, Bowen Zhou, and Quan-

quan Gu. 2019. On the convergence and robustness of adversarial training. In
International Conference on Machine Learning. 6586ś6595.

[67] James A Whittaker and Michael G Thomason. 1994. A Markov chain model
for statistical software testing. IEEE Transactions on Software engineering 20, 10
(1994), 812ś824.

[68] MatthewWicker, Xiaowei Huang, and Marta Kwiatkowska. 2018. Feature-guided
black-box safety testing of deep neural networks. In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems. Springer,
408ś426.

[69] Chaowei Xiao, Jun Yan Zhu, Bo Li, Warren He, Mingyan Liu, and Dawn Song.
2018. Spatially transformed adversarial examples. In 6th International Conference
on Learning Representations, ICLR 2018.

[70] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and Alan Yuille. 2018. Mit-
igating Adversarial Effects Through Randomization. In International Conference
on Learning Representations.

[71] Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Minhui Xue, Hongxu Chen, Yang Liu, Jianjun
Zhao, Bo Li, Jianxiong Yin, and Simon See. 2019. DeepHunter: a coverage-guided
fuzz testing framework for deep neural networks. In Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis. 146ś157.

[72] Weilin Xu, David Evans, and Yanjun Qi. 2018. Feature Squeezing: Detecting
Adversarial Examples in Deep Neural Networks. In Proceedings of the 25nd Annual
Network and Distributed System Security Symposium (NDSS).

[73] Wei You, Xuwei Liu, Shiqing Ma, David Perry, Xiangyu Zhang, and Bin Liang.
2019. SLF: fuzzing without valid seed inputs. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE, 712ś723.

[74] Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. 2019. Adversarial examples:
Attacks and defenses for deep learning. IEEE transactions on neural networks and
learning systems 30, 9 (2019), 2805ś2824.

[75] Jie M Zhang, Mark Harman, Lei Ma, and Yang Liu. 2020. Machine learning testing:
Survey, landscapes and horizons. IEEE Transactions on Software Engineering
(2020).

[76] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khur-
shid. 2018. DeepRoad: GAN-based metamorphic testing and input validation
framework for autonomous driving systems. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. 132ś142.

[77] Peixin ZHANG, Jingyi WANG, Jun SUN, Guoliang DONG, Xinyu WANG, Xingen
WANG, Jin Song DONG, and Dai TING. 2020. White-box fairness testing through
adversarial sampling. (2020).

[78] Xiyue Zhang, Xiaofei Xie, Lei Ma, Xiaoning Du, Qiang Hu, Yang Liu, Jianjun
Zhao, and Meng Sun. 2020. Towards Characterizing Adversarial Defects of
Deep Learning Software from the Lens of Uncertainty. In 2020 IEEE/ACM 42nd
International Conference on Software Engineering (ICSE). IEEE.

[79] Husheng Zhou,Wei Li, Zelun Kong, Junfeng Guo, Yuqun Zhang, Lingming Zhang,
Bei Yu, and Cong Liu. 2020. DeepBillboard: Systematic Physical-World Testing
of Autonomous Driving Systems. In 2020 IEEE/ACM 41st International Conference
on Software Engineering (ICSE). IEEE.

[80] Zhi Quan Zhou and Liqun Sun. 2019. Metamorphic testing of driverless cars.
Commun. ACM 62, 3 (2019), 61ś67.

787

	Abstract
	1 Introduction
	2 Background
	2.1 Deep Neural Network
	2.2 Adversarial Examples and DNN Robustness
	2.3 Adversarial Training

	3 Coverage Based DNN Testing
	3.1 DeepXplore
	3.2 DeepGauge and DeepHunter
	3.3 SADL
	3.4 Research Questions

	4 DNN Model Quality Metrics
	4.1 Model Accuracy for Adversarial Examples
	4.2 Adversarial Example Imperceptibility
	4.3 Adversarial Example Robustness

	5 Experiments and Results
	5.1 Setup
	5.2 Results and Analysis

	6 Threat to Validity and Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

