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Abstract. Deep learning has substantially boosted the performance
of Monocular Depth Estimation (MDE), a critical component in fully
vision-based autonomous driving (AD) systems (e.g., Tesla and Toyota).
In this work, we develop an attack against learning-based MDE. In par-
ticular, we use an optimization-based method to systematically generate
stealthy physical-object-oriented adversarial patches to attack depth es-
timation. We balance the stealth and effectiveness of our attack with
object-oriented adversarial design, sensitive region localization, and nat-
ural style camouflage. Using real-world driving scenarios, we evaluate our
attack on concurrent MDE models and a representative downstream task
for AD (i.e., 3D object detection). Experimental results show that our
method can generate stealthy, effective, and robust adversarial patches
for different target objects and models and achieves more than 6 me-
ters mean depth estimation error and 93% attack success rate (ASR)
in object detection with a patch of 1/9 of the vehicle’s rear area. Field
tests on three different driving routes with a real vehicle indicate that we
cause over 6 meters mean depth estimation error and reduce the object
detection rate from 90.70% to 5.16% in continuous video frames.

Keywords: Physical Adversarial Attack, Monocular Depth Estimation,
Autonomous Driving.

1 Introduction

MonocularDepthEstimation (MDE) is a technique for estimating the distance be-
tween an object and the camera fromRGB image inputs. It is a critical vision task
for autonomous driving (AD)because it bridges the gap betweenLidar sensors and
RGB cameras [57] and its measurement has an effect on a variety of downstream
perception tasks (e.g., object detection [57], visual SLAM [60], and visual relo-
calization [50]). For its importance, Tesla has integratedMDE into its production-
grade Autopilot system [6,7], and other AD companies such as Toyota [23] and
Huawei [9] are also actively investigating this technique. With the increasing
popularity of MDE, ensuring its security becomes a prominent challenge.

Existing adversarial attacks against MDE are implemented in digital- [72,61]
or physical-world platforms [68]. Compared to digital-world attacks, attacks in the
physical world are more challenging because they require robust perturbations to
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Fig. 1: Attack MDE and 3D object detection with a natural adversarial patch. The left
is a benign scenario and the right is the corresponding adversarial scenario. 3D object
detection takes the pseudo-Lidar (i.e., point cloud projected from 2D depth map) as
input and outputs bounding boxes of recognized objects. Observe in the adversarial
scenario (b) that our optimized adversarial patch can disturb the depth estimation of
the target vehicle significantly and the effect propagates to an area larger than the
patch itself. Pseudo-Lidar of the vehicle is thus distorted and it cannot be detected in
the downstream task.

overcome various photometric and geometric changes [10], reducing their stealth.
Prior efforts for physical-world adversarial attacks [68,49,26,11] generally employ
an unnatural-lookingadversarialpatchandsacrifice stealth forattackeffectiveness,
leaving plenty of room for improvement. Additionally, with MDE’s rapid devel-
opment, many downstream tasks that previously require expensive Lidar sensors
or depth cameras can now be performed entirely with MDE’s measurement and
achieve competitive performance. However, the investigation of the impact of
compromised MDE on these downstream tasks remains largely unknown.

To address the aforementioned problems, in this paper, we investigate the
stealth of physical-world attack against MDE and present a physical-object-
oriented adversarial patch optimization framework to generate stealthy, effective
and robust adversarial patches for target objects (e.g., vehicles and pedestrians).
In particular, we are able to achieve the followings: ❶ we design a physical-object-
oriented adversarial optimization, which binds the patch and the target object
together regarding attack effects and physical-world transformations (§3.2); ❷
we optimize the patch region on the target object with a differentiable patch
mask representation, which automatically locates the highly effective area for
attack on the target object and improves attack performance with a small patch
size (§3.3); ❸ we camouflage the adversarial pattern with natural styles (e.g.,
rusty and dirty) with deep photo style transfer [31], resulting in stealthier patch
for the attack (§3.4); ❹ we investigate the impact of compromised MDE on a
representative downstream task in AD — 3D object detection (§4.4). Fig. 1 gives
an example. In addition, we examine our attack with popular defence techniques
(§4.5). Our key contributions are:

1. We develop a physical-object-oriented adversarial patch attack against MDE
that balances stealth and effectiveness. To the best of our knowledge, we are
the first to investigate stealthy physical-world attacks against MDE consid-
ering both the patch size and naturalness.

2. We propose an optimization framework that considers physical object char-
acteristics, has a differentiable patch region representation, and provides
natural style based camouflage.
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3. We evaluate our attack on 3 representative MDE models and a downstream
task with real-world driving scenarios in both digital and physical worlds.
Our attack is effective on different types of target objects and state-of-the-
art models. It causes over 6 meters of mean depth estimation error for a real
vehicle, with a patch only 1/9 of the vehicle’s rear area, and achieves more
than 90% attack success rate in 3D object detection. A video is available at
https://youtu.be/L-SyoAsAM0Y.

2 Related Work

AD Systems Security. In AD, sensor security and autonomy software secu-
rity are the two important challenges. For sensor security, prior works focus
on spoofing/jamming on camera [69,35,38], LiDAR [14,48], RADAR [69], ul-
trasonic [69], GPS [47] and IMU [55,53]. For autonomy software security, some
prior works study regression tasks (e.g., depth estimation [68] and optical flow
estimation [41]), and others focus on classification tasks (e.g., 2D object detec-
tion and classification [49,11], tracking [24], lane detection [44,45], and traffic
light detection [51]). This work focuses on autonomy software security, that is,
compromising MDE and its related downstream tasks.
Physical-world Adversarial Attacks. Many prior efforts in adversarial at-
tacks have been directed toward generating patches or perturbations in the
digital space [37,22,36,62,65,63,39,54,64]. In comparison, we conduct extensive
experiments on adversarial attacks in the physical world. Although existing
physical-world attacks have addressed tasks such as image classification [49,11],
object detection [15,66,52], face recognition [46,26], the domain of depth esti-
mation attack has received scant attention. Moreover, the correlations between
stealth and attack effectiveness are largely understudied in the literature. In this
paper, we make an attempt to close the aforementioned knowledge gap.
MDE Attacks. Zhang [72] proposes a multi-task attack strategy to improve
the performance in the universal attack scenario. Wong [61] proposes a way to
generate targeted adversarial perturbation on images and alter the depth map
arbitrarily. These two attacks focus on digital-space perturbations thus are not
directly applicable in the physical world. Yamanaka [68] proposes a method to
generate printable adversarial patch for MDE but it does not consider stealth of
the patch. Different from prior efforts, we focus on the stealth and to the best
of our knowledge, we are the first to examine the stealth of adversarial patches
for physical-world attack against MDE.

3 Method

3.1 Physical-object-oriented MDE Attack

Motivation Compared with unconstrained adversarial patches (see Fig. 2a)
which often look suspicious, stealthy patches may draw less attention and hence
can stay on the target vehicle for an extended period of time, posing a greater
threat. We divide the challenge of achieving stealth into two sub-problems: patch
size minimization and achieving natural appearance. To minimize patch size, we

https://youtu.be/L-SyoAsAM0Y
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Fig. 2: (a): Unconstrained adversarial patches in [68,33] are easy to be identified; tradi-
tional patch-oriented attack in (b) affects smaller area than our object-oriented attack
in (c); (c), (d) and (e): different regions on the target object have different sensitivity
regarding attack effect even with the same total area.

investigate how to maximize the attack effect with smaller patches and propose
two approaches: ❶ enlarging the patch’s affected area (see comparison in Fig. 2b
and c), and ❷ locating the adversarial patch in a more sensitive region of the
target vehicle (see Fig. 2c, d and e). In terms of naturalness, as the magni-
tude of perturbations required to launch attack in the physical world is much
more substantial, we cannot simply bound the adversarial noise to a human un-
noticeable level via various Lp-norms as in digital-world attacks, which provides
little physical-world robustness. Instead, we use style transfer to disguise the
adversarial pattern as natural styles (e.g., dirty or rusty).

Attack Pipeline We use an optimization-based method to generate adversarial
patches and there are three main optimization goals: ❶ increasing the estimated
distance of target object (§3.2); ❷ minimizing the patch to locate a sensitive
(i.e., most effective) region for attack (§3.3), and ❸ camouflaging the adversar-
ial patch with natural styles (§3.4). Fig. 3 shows the overview of our attack.
From the top left, we start with style transfer on the patch content image. Next,
we crop the style-transferred patch with an optimizable patch mask (mΘ

p ) and
paste it onto a target object (O) (e.g., a vehicle) creating an adversarial one
(O′). Then, we synthesize adversarial scenarios (R′

t) by placing the adversar-
ial object into random scenes with physical transformations (t) and estimate
scenarios’ depth (D(R′

t)). We define an adversarial loss (La) to increase depth
of the target object. Together with a style transfer loss (Lst) maintaining the
naturalness and a patch size loss (Lm) minimizing the patch, we perform back
propagation and update the patch content and the mask iteratively to address
the three optimization goals. The solid lines denote data flow and the dashed
lines represent back propagation paths. Each component is explained in details
in the following sections.

3.2 Adversarial Perturbation Generation

In preparation, we take a photo of the target object (O) and select a patch
content image (x) and a style image. Given the patch mask (mp), we create
an adversarial object (O′) by applying the style-transferred patch (x′) on the
benign object in the following way:

O′ = O ⊙ (1−mp) + x′ ⊙mp, (1)

where ⊙ denotes the element-wise multiplication and O,mp, x
′ have the same

width and height. We explain the patch mask definition and style transfer later
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Fig. 3: Overview of the physical-object-oriented framework to generate a stealthy
adversarial patch.

in §3.3 and §3.4. We evaluate the depth of the target object inside a scene
because the camera on the victim vehicle captures scene frames as input instead
of independent objects. Specifically, in each optimization iteration, we randomly
sample a scene from the dataset and paste the adversarial object into the scene
to create an adversarial scenario. Unlike previous attacks against autonomous
driving systems [13,43] that aim at a particular scene or a road section, our
attack is universal and scene-independent.

To improve the robustness of our attack in the physical world, we apply Ex-
pectation of Transformation (EoT) [10] by randomly transforming the object in
size, rotation, brightness, saturation, etc., before pasting. The horizontal posi-
tion of pasting is random, while the vertical position is calculated according to
the size of the object considering physical constraints. Specifically, Fig. 4 shows
the perspective model of a vehicle in a side view and we assume the camera is
facing straight forward without tilt. H is the height of the target vehicle; h is the
height of the camera with respect to the victim vehicle; f is the focus length of
the camera and α relates to the camera’s view angle. On the image, the vertical
position of the vehicle (d) is calculated from the height of the vehicle (s) with
Equation 2. Intuitively, objects farther away appear smaller in perspective so a
smaller object after transformation is pasted to a higher vertical position on the
image, which is closer to the vanishing point (of the camera), which denotes the
furthest physical point in the camera view, and has further depth estimation.

d = − h

H
s+

f

tanα
(2)

Formally, the adversarial scenario R′
t is described with Equation 3,

R′
t = Λt (t(O

′ ⊙mo), R) (3)

where t is the random transformation applied on the target object; mo is the ob-
ject mask used to extract the object from the image; R is the randomly sampled
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Fig. 4: Perspective projection of
a vehicle (side view). Fig. 5: Patch region definitions.

scene from database and Λ(·, ·) is the paste operation to combine an adversar-
ial object and a scene following the physical constraint in Equation 2. Since
our goal is to make the target object further away, we want to maximize the
object’s depth estimation (i.e., minimize the reciprocal). Hence, we define the
adversarial loss in Equation 4, where T is a set of transformations; DR is a set
of scenes; MSE(·, ·) is the mean square error between two variables; D is the
depth estimation model and Mo is the object mask in the scenario.

La = Et∼T,R∼DR

[
MSE

(
D (R′

t)
−1 ⊙Mo, 0

)]
(4)

3.3 Sensitive Region Localization

As described in §3.2, we apply the style transferred patch x′ onto the target
object by a patch mask mp which defines the patch region on the target ob-
ject. Prior works [56,30,28] optimizing masks treat each pixel of the mask as a
parameter and the generated mask suffers from low deployability due to sparse
and scattered mask regions (See Fig. 11b). Instead we design a novel rectangular
patch region optimization method (we call it regional optimization) to locate a
sensitive region automatically. Although we define the patch region as rectangu-
lar, the final patch is not necessarily rectangular but have an arbitrary predefined
shape. Details are explained later.

A typical rectangular patch mask has ones within the rectangular borders and
zeros otherwise. However, this mask is not differentiable regarding the border
parameters because the mask values are not continuous across the borders and
border information is not encoded into each mask values, which means that the
region cannot be optimized via gradient descent and back propagation. To solve
this problem, we design a differentiable soft version of the rectangular mask
making it optimizable with respect to four border parameters. Specifically, we
define border parameters Θ = [l, r, t, b] as shown in Fig. 5a. l and r are the left
and right borders’ column indices and t and b are the top and bottom borders’
row indices. Let w and h be the width and height of the mask respectively and
we have 0 ≤ l ≤ r ≤ w and 0 ≤ t ≤ b ≤ h.

mΘ
p = {mΘ

p [i, j] | i ∈ 1...w, j ∈ 1...h}

mΘ
p [i, j] =

1

4
(−sign(i− t) · sign(i− b) + 1)

·(−sign(j − l) · sign(j − r) + 1),

(5)

Typically, a mask is defined by Equation 5 with Θ as parameters, where mΘ
p ∈

{0, 1}w×h is the patch mask and [i, j] is index of the pixel at i-th row and j-
th column; sign(x) outputs 1 when x ≥ 0 and −1 when x < 0; and mΘ

p [i, j]
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evaluates to one if and only if the pixel is within the four borders defined by
Θ and zero otherwise. To make each mask value differentiable regarding border
parameters and maintain the property of original definition, we approximate
sign(·) by tanh(·) and define the patch mask with Equation 6.

mΘ
p [i, j] =

1

4
(− tanh(i− t) · tanh(i− b) + 1)

·(− tanh(j − l) · tanh(j − r) + 1)
(6)

Fig. 5b is an example of the mask defined by us. In this example, w and h are 30,
l and t are 10, and r and b are 20. Observe that the borders of the rectangular
region change gradually. Each pixel value is encoded with border parameters Θ.

In the beginning, the patch mask is initialized to cover the whole image, (i.e.,
l= t= 0, b= h and r=w). One of our optimization goal is to minimize the mask
area, thus we define a mask loss term (Equation 7) to penalize the area of mask.

Lm =
r − l + b− t

w + h
(7)

We use a linear combination of the width and height of the rectangular region
to avoid bias in the update of edges. Otherwise, if we use the ratio of area (i.e.,
(r− l)× (b− t)/(w × h)) as the mask loss, parameters of the longer edge (e.g., b
and t when (b − t) < (r − l) ) would have larger gradients and tend to change
faster than the shorter edges, which leads to a bias towards updating the longer-
edge parameters. Using a linear combination avoids this problem and each mask
parameter has the same weight.

Although we define a rectangular patch region, the final patch mask can be
an arbitrary shape within the region. As shown in Fig. 5c, given a predefined
patch shape mask ms (ms[i, j] ∈ {0, 1}), the final patch mask m′Θ

p is calculated
by element-wise multiplying the scaled shape mask m′

s with the region mask
mΘ

p inside the rectangular region. Specifically, in each iteration, given border
parameters Θ, we can scale and fit the predefined shape mask ms into the center
of the rectangular region getting mask m′

s , which is denoted by the red color in
Fig. 5c. The final patch mask is calculated with Equation 8 by multiplying the
region mask and the shape mask within the rectangular region. Without loss of
generality, we focus on rectangular shapes (i.e., ms ≡ 1) in our evaluation.

m′Θ
p [i, j] =

{
mΘ

p [i, j] ∗m′
s[i, j] i ∈ l...r, j ∈ t...b

mΘ
p [i, j] others

(8)

In addition, our mask definition also supports optimizing with multiple patches.
The key point is to take the union of several regions and optimize them together.
We leave the details in Appendix A and focus on one patch in our main results.

3.4 Attack Camouflage

Patches generated in existing adversarial attacks against depth estimation mod-
els have obvious perturbations as shown in Fig. 2a. Unlike them, we use style
transfer to camouflage the attack with natural styles. There have been works
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using style transfer [17] in attacking classification models but we are the first to
combine style transfer with the more challenging depth estimation attack. We
use deep photo style transfer [31] as our style transfer method. This method is
a kind of neural style transfer which has demonstrated remarkable results for
image stylization [19]. It uses a convolutional neural network (CNN) to extract
the deep features of an image and separate the content and style information in
the deep feature representations. The source image will be updated iteratively
to approach the style information extracted from the style image and keep the
content information of the source image. Specifically, as defined in deep photo
style transfer [31], there are four terms regarding the style transfer components
in the loss function. They are style loss (Ls), content loss (Lc), smoothness loss
(Lt) and photorealism regularization loss (Lr). The definition of these four style
transfer losses can be found in Appendix B and we refer the readers to [31] for
more detailed explanation on each term. The style transfer loss is the sum of
those as follows:

Lst = Ls + Lc + Lt + Lr (9)

In summary, our adversarial patch generation process can be formulated by
the following optimization problem:

min
x′,Θ

La + Lm + λLst

s.t. x′ ∈ [0, 255]3×w×h, Θ = {l, r, t, b}
0 ≤ l ≤ r ≤ w, 0 ≤ t ≤ b ≤ h,

(10)

where λ is an adjustable weight parameter to balance the style transfer natural-
ness and attack performance. The ablation study on different values of λ can be
found in Appendix E. The weights of other terms are fixed in our experiments.
In each iteration, we calculate gradients of x′ and Θ with back propagation and,
same as in deep photo style transfer [31], we use LBFGS [12] to update the
patch x′. We update border parameters Θ with Adam [25] and we only update
the edge with the maximum absolute gradient instead of four, which avoids the
constraint of compressing the region from all directions in each iteration and
provides more flexibility. We set a target ratio of the patch region in advance
(i.e., the area of the patch region relative to the object) as the stopping criteria
of mask optimization. In other words, the mask will stop updating when it is
smaller than the predefined target ratio.

4 Experiments

4.1 Experimental Setup

MDE Model Selection. In our evaluation, we use three monocular depth
estimation models: Monodepth2 [21], Depthhints [59], and Manydepth [58]. We
selected these models considering representativeness, practicality and open mod-
els. The details of the model selection criteria can be found in Appendix C.
Target Object Selection. Our attack is generic so it can be applied to any
class of objects on public roads. This paper focuses on three representative types
of objects to attack: vehicles, traffic barriers, and pedestrians as shown in Fig. 6.
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Fig. 6: Target objects
and fixed regions.
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Table 1: Mean depth estimation error (Ed) in at-
tacking fixed regions and optimized regions.

Mono DH Many
V TB P V TB P V TB P

Ours 16.84 8.26 14.06 15.23 4.54 13.17 6.31 3.57 10.15

LO 13.90 5.21 11.53 2.51 1.63 10.79 3.03 2.94 8.93

R1 3.70 2.35 10.20 2.25 1.50 11.78 1.12 2.77 9.21

R2 7.41 2.67 11.28 4.66 1.40 10.52 4.23 1.40 8.66

R3 5.20 4.96 5.05 3.92 1.45 4.08 1.33 3.05 5.06

R4 7.31 1.59 - 5.58 1.59 - 4.89 1.59 -

R5 14.95 2.39 - 7.70 0.90 - 5.66 2.43 -

R6 9.69 2.59 - 2.37 0.49 - 1.36 1.15 -

R7 3.23 - - 2.62 - - 1.67 - -

R8 7.74 - - 4.44 - - 4.91 - -

R9 5.36 - - 1.38 - - 1.32 - -

Mono: Monodepth2, DH: DepthHints, Many: Manydepth
V: Vehicle, TB: Traffic Barrier, P: Pedestrian
LO: Location Optimize in [42], R: Region

We choose them because they are most common on public roads in regular
driving scenarios, and a failure in detecting them could lead to life-threatening
consequences. Vehicles are the most attractive objects for attackers since they
are the main targets of perception systems on autonomous driving cars. We
mainly focus on vehicles in our experiments.
Evaluation Scene Selection. We select 100 real-world driving scenes from
KITTI dataset [20] to evaluate the attack performance of the generated patch
on each object. These scenes cover a wide range of roads (e.g., high-way, local,
and rural roads) and background objects (e.g., trucks, traffic lights, and cars).
Evaluation Metrics. We use mean depth estimation error (Ed) of the target
object and ratio of affected region (Ra) as our evaluation metrics. We use depth
estimation of the original object as the ground truth and compare with depth
estimation of the adversarial object. The mean depth estimation error denotes
the attack effectiveness of our adversarial patch. The larger it is, the better the
performance. Equation 11 is the formal definition. Meanings of the symbols are
the same as those in §3.

Ed =
sum (|D (Λ(O,R))−D (Λ(O′, R)) | ⊙Mo)

sum(Mo)
(11)

The ratio of affected region (Ra) is defined in Equation 12, where I(x) is the
indicator function that evaluates to 1 only when x is true. We define ≥ 10
meters error of depth estimation for a pixel as a valid attack and this pixel will
be included in the affected region. Ra is the ratio between the number of affected
pixels and all pixels of the object. A large value indicates that a broad area is
affected. Ra =

sum (I (|D (Λ(O,R))−D (Λ(O′, R)) | ⊙Mo ≥ 10))

sum(Mo)
(12)

4.2 Main results

We present our main results regarding effectiveness, robustness and stealth.
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Fig. 8: Physical world attack ex-
ample.(Video: https://youtu.be/

L-SyoAsAM0Y)

Table 2: Physical world attack result.
Time (s) Frames Ed Detected Detection Rate

Route 1 Benign 95 477 0.52 469 98.32%

Route 2 Benign 82 412 0.77 354 85.92%

Route 3 Benign 80 402 0.62 348 86.57%

Total Benign 257 1291 0.64 1171 90.70%

Route 1 Adv. 94 468 6.73 45 9.62%

Route 2 Adv. 82 408 8.92 11 2.70%

Route 3 Adv. 80 402 7.68 10 2.49%

Total Adv. 256 1278 7.77 66 5.16%

Attack Effectiveness. We run our attack with the three MDE models and
we target the three types of objects for each model. For each object, we split
it into several regions with equal size as shown in Fig. 6 and attack these fixed
regions respectively (i.e., optimize the patch on each region.), then we compare
with two patch region optimization techniques: our sensitive region localization
(§3.3) and the location-optimized patch [42]. In [42], the authors update the
location of a fixed-size patch after each optimization iteration. They tentatively
move the patch towards four directions with a predefined stride and select the
direction with the least adversarial loss as the next patch location. For a fair
comparison, we set the target ratio of patch region the same as that of those
fixed regions (e.g., 1/9 of the vehicle’s read area). Our regional optimization stops
when the patch ratio is smaller than the target ratio. In each test, we evaluate
the mean depth estimation error (Ed) of the target object in 100 scenes and take
the average of them as the result. In each scene, the object is placed at 7 m away
from the victim’s camera. We choose 7 m since it is the breaking distance [2]
while driving at a speed of 25 mph, which is almost the lowest in normal driving.
In other words, it is the smallest distance at which the object has to be detected
by the victim to avoid a crash in normal driving scenarios [13]. For the physical
world experiments, our experimental setup can be found in Appendix F.

Table 1 reports the effectiveness evaluation result. As shown, our attack is
generic and effective on different depth estimation models and objects. With our
sensitive region localization, an adversarial patch with 1/9 of the vehicle’s rear
area causes at least 6 m Ed across different depth estimation models. Observe that
attack performance differs with patch regions. Our sensitive region localization
can locate an optimal place that outperforms all those fixed regions and the
location optimized regions in [42]. For the physical world experiments, Fig. 8
presents an example. As shown, the adversarial patch on the vehicle fools the
vehicle’s depth estimation, and the effect is not limited to the patch area but
propagates to a broader area. After being projected to 3D space, it is more
obvious that the point cloud of the adversarial vehicle is distorted comparing
with the benign one. Table 2 reports the physical world attack performance.
The first column in the table denotes different drives. The second column shows
the time of each drive in seconds. The third column shows the total frames

https://youtu.be/L-SyoAsAM0Y
https://youtu.be/L-SyoAsAM0Y
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Fig. 9: Naturalness compari-
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Fig. 10: Comparing patch-oriented attack (base-
line) with our object-oriented attack.

evaluated from the video, and we evaluate frames at a frequency of 5 Hz. The
fourth column reports the mean depth estimation error (Ed) of the vehicle. As
shown, in benign scenarios, the error is under 1 m while the error in adversarial
scenarios is over 7 m, which justifies the effectiveness of our attack in the physical
world.

Attack Robustness. Relative to the victim vehicle, we place the adversarial
object at places with longitudinal distances (i.e., forward and back) ranging from
7 m to 35 m and lateral distances (i.e., left and right) ranging from -1 m to 1 m.
The 7 m to 35 m longitudinal distance corresponds to the brake distance for
driving speed from about 25 to 55 mph [8]. We consider the victim vehicle at the
center of the lane, and -1 m to 1 m of lateral deviation from the lane center covers
most driving scenarios of the vehicle ahead [16]. We use a vehicle as the target
object and Monodepth2 as the depth estimation network. We use the regional
optimization and set the target patch size to 1/9 of the vehicle’s rear area. We
test our attack with and without EoT [10] (see §3.2) during optimization.

Fig. 7 shows the result of the robustness evaluation. We report the mean
depth estimation error of the target object under different longitude distances
with the victim vehicle. Observe that our attack is robust and causes more than
3 m of mean depth estimation error in different victim approaching positions.
EoT increases the attack performance by 40.63% and makes our attack more
robust in different distances. As shown, the closer the target object, the larger
the error in depth estimation, which makes the victim vehicle harder to detect
the object from the distorted pseudo-Lidar and continue approaching it until
collision. In the physical world experiments, our attack is conducted with real
driving scenarios. Compared to evaluating with a single image from a specific po-
sition in prior work, continuous and dynamic movement is more challenging and
practical. Our attack is shown to be robust under different lighting conditions
(e.g., shadows and different light directions), driving operations (e.g., moving
straight and turning) and background scenes. The dynamic moving video of our
physical world attack is at https://youtu.be/L-SyoAsAM0Y.

Stealth As we discussed in our motivation, we consider the stealth in two direc-
tions: the naturalness of appearance and the patch size. In terms of naturalness,
we compare the adversarial patch generated by our method with the baseline
method proposed by Yamanaka et al. [68]. As shown in Fig. 9, our method with
style transfer-based camouflage generates more natural patches and is less likely
to be identified as adversarial but just a normal sticker. Human studies conducted

https://youtu.be/L-SyoAsAM0Y
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(a) Regional (b) Per-pixel

Fig. 11: Different mask opti-
mization methods.
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Fig. 12: Attack performance of regional optimiza-
tion with different target sizes.

in [31,17] also justify the naturalness of style-transfer-based image processing.
As for the patch size, a smaller size suggests more stealth and less effectiveness.
We hence investigate maximizing the attack effect with small patches. We com-
pare the Ra caused by our object-oriented attack and the patch-oriented attack
in [68] which only attacks the patch area in their adversarial loss design instead of
considering the whole object. For a fair comparison, we use style-transfer-based
camouflage in both methods and we test with fixed regions and the regional
optimization. This experiment is conducted on Monodepth2 [21] targeting the
vehicle and other settings are the same as the previous setup in effectiveness
evaluation.

As shown in Fig. 10a, our method (object-oriented) has over 2.5 times higher
Ra on the vehicle than the baseline (patch-oriented) in all cases, and our method
in the regional optimization case outperforms all other fixed-region cases. Hence,
with the same total patch area, our object-oriented attack with regional opti-
mization affects a broader area than the baseline. In other words, to achieve sim-
ilar attack effect, using our method requires a smaller patch and is thus stealthier.
Fig. 10b additionally shows the CDF and histogram of depth estimation error in
the case with our regional optimization. As shown, more than 80% errors caused
by the baseline method are below 10 m, which corresponds to our observation
in Fig. 2c that the patch-oriented attack mainly affects the limited patch area
and the effect of our method propagates to a broader area causing larger errors.

Evaluations on the transferability of our attack can be found in Appendix D.

4.3 Ablation Study

We investigate our method through an ablation study.

Table 3: Ablation study .

OA RO Ed Ra

8.47 0.23

✓ 6.38 0.16

✓ 14.95 0.52

✓ ✓ 16.84 0.65

OA: Object-oriented Adv. Loss
RO: Regional Optimization

Combinations. As described in §3, we use the
object-oriented adversarial loss design and the re-
gional optimization of the patch mask to maximize
the attack effect with a small patch. We conduct
ablations on these techniques to see how each com-
ponent contributes. Table 3 shows the result. We
attack Monodepth2 and use the vehicle as the tar-
get object and report Ed and Ra. For those tests
without regional optimization, we use #5 fixed region because its attack perfor-
mance is the best among all the fixed regions in previous evaluations. As shown,
the object-oriented adversarial loss itself can improve the attack performance



Title Suppressed Due to Excessive Length 13

(a) Benign (b) Adversarial

Fig. 13: Attack against 3D object detection.

Table 4: Attack success rate of
different adversarial patches.

Monodepth2 DepthHints Manydepth

1/9 Area 95% 93% 98%

2/9 Area 98% 97% 100%

1/3 Area 100% 100% 100%

while the regional optimization cannot. The regional optimization is useful only
when object-oriented adversarial loss is applied together. It makes sense that the
regional optimization has to consider the whole object to find an optimal place
regarding the target object. However, the patch-oriented design does not encode
the global information so our regional optimization cannot converge to the most
effective region.
Mask Optimization Methods. We compare our regional optimization with
another commonly used mask optimization technique which treats pixels of
the patch mask mp as optimizable parameters instead of the four borders.
This method has been used in many backdoor scanning works such as Neu-
ral Cleanse [56] and ABS [30] to find a trigger that modifies a limited portion of
image and causes misclassification. Fig. 11 shows the comparison. Observe that
the patch mask generated by the baseline method is more sparse and scattered.
The patch unit is tiny. Compared with our method, it is not suitable as a phys-
ical world attack vector because it is hard to print and deploy these scattered
tiny patches while our regional patch is more practical.
Patch Sizes. Larger patches have more effect on depth estimation but are less
stealthy. We evaluate our attack on a vehicle object with three different target
patch sizes and use three depth estimation models. Fig. 12 shows the result.
Observe that the mean depth estimation error Ed and the ratio of affected region
Ra increase with the size of patch for all three target networks.

More ablation studies on the style transfer weight λ are in Appendix E.

4.4 Downstream Task Impact

We evaluate the impact of our attack on a point cloud based 3D object detection
model – PointPillars [27] and use attack success rate (ASR) as the metric to
evaluate our method on 3D object detection. We consider the attack is successful
when the benign vehicle can be detected by PointPillar while the adversarial
object cannot. Detailed setups can be found in Appendix G.

Fig. 13 gives an example of a successful attack. Fig. 13a presents a benign
scenario where the benign vehicle can be correctly detected with a 3D bounding
box. Fig. 13b shows the corresponding adversarial scenario where the pseudo-
Lidar point cloud of the adversarial vehicle is severely distorted by the patch, and
thus the vehicle is not detected. The PointPillar network can correctly detect
the benign vehicle in all the 100 scenes and the attack success rate (ASR) of
different adversarial patches are reported in Table 4. The first column denotes
different patch sizes and columns 2-4 refer to the three different target networks.
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Fig. 14: Five directly-applicable defence methods. Benign Error : Error caused by the
defence in benign cases. Attack Error : Error caused by our attack.

As shown, the ASR is over 90% with all the patch sizes and target networks. Even
when the patch size is just 1/9 of the vehicle’s rear area, it can still achieve at
least 93% ASR, which shows that our attack is an effective method in fooling the
3D object detection model. In the physical world experiments, the fifth column
of Table 2 denotes the number of frames in which the vehicle is detected from
the pseudo-Lidar point cloud, and the sixth column reports the object detection
rate. For benign cases, the rate of successful object detection is 90.70% in 1291
data frames. The rate drops to 5.16% in adversarial cases with 1278 data frames,
which shows that our attack is effective and degrades the object detection rate
significantly.

4.5 Defence Discussion

Although many defense techniques against adversarial examples have been pro-
posed, none of them focuses on MDE to the best of our knowledge. As a best
effort to understand the performance of our attack under different defences, we
apply 5 popular defence techniques which perform input transformations with-
out retraining the victim network. They are JPEG compression [18], bit-depth
reduction [67], median blurring [67], adding Gaussian noise[71] and autoencoder
reformation [34]. Fig. 14 presents our results. We report the Ed of the benign ve-
hicle and the adversarial vehicle under different input transformations. An ideal
defence should minimize both errors. As shown, our attack can still cause over
5 meters Ed in all methods except median blur. In median blur, the attack is
mitigated but the benign performance also drops a lot. This shows that these
techniques cannot effectively defend our attack without greatly harming the be-
nign performance. This might be because these defenses are mainly for disrupting
digital-space human-imperceptible perturbations [43] instead of robust physical
world attacks. Detailed descriptions and configurations of the above defences in
our evaluation can be found in Appendix H, as well as the discussion of other
potential defences such as adversarial training and fusion-based methods.

5 Conclusion

We investigate stealthy physical-world adversarial patch attack against MDE in
the AD scenario. We design a novel physical-object-oriented optimization frame-
work to generate stealthy and effective adversarial patches via an object-oriented
adversarial loss design, sensitive region localization and natural style based cam-
ouflage. Experimental results show that our attack is effective, stealthy and ro-
bust against different target objects, state-of-the-art models and a representative
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downstream task in AD. We achieve over 6 meters of mean depth estimation er-
ror for a real vehicle with a patch of 1/9 of the vehicle’s rear area and have more
than 90% attack success rate in 3D object detection. Popular defence techniques
using input transformations cannot defend our attack well.
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Appendix

This document provides more details about our work and additional experimen-
tal settings and results. We organize the content of Appendix as follows:

• §A: Optimizing multiple patch regions.
• §B: Style transfer loss terms.
• §C: MDE model selection criteria.
• §D: Transferability evaluation.
• §E: More ablation studies.
• §F: Physical world experiments settings.
• §G: 3D object detection settings.
• §H: Defence methods and discussion.

A Optimizing multiple patch regions

The patch region does not have to be one part. There could be multiple patches
on the target object and our regional optimization technique also supports opti-
mizing multiple patches. In this case, the final patch mask is the sum of multiple
sub-masks with each sub-mask representing one rectangular region. The final
mask is defined in Equation A1, where mΘi

p refers to the i-th sub-mask and Θi

denotes its boundary parameters and clamp() is a function to restrict the mask
values in between 0 and 1. The mask loss Lm is also the sum of all sub-mask
loss terms.

mk
p = clamp(

k∑
i=0

mΘi
p , 0, 1) (A1)

Fig.A1: Optimization with multiple
initial patches.
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Fig. A1 gives an example of the optimization process of 3× 3 initial patches.
As the optimization continues, some patches are minimized and disappear, and
the final patch is dominated by a single one when the target ratio is 1/9 of the
vehicle’s back view. We test optimizing with different initial patch setups and
the result is shown in Fig. A2. Each curve represents the change of attack effect
as the total patch ratio decreases and i× j refers to a initial setup of i rows and
j columns. As shown, when the target mask ratio is 1/9, different initial patch
setups have similar attack performance at the end with the same total patch
area. Thus, we mainly focus on optimization of a single patch (i.e., 1× 1 setup)
in our evaluation.

B Style transfer loss terms

Style Loss. Let F be the feature extraction network, which can be a pre-trained
CNN model, xs be the style reference image, x′ be the adversarial patch example
that we will update iteratively. The style loss is defined as the style distance
between target image and adversarial example:

Ls =

L∑
l=1

∥G(Fl(xs))−G(Fl(x
′))∥22 (A2)

, where Fl is the extracted features at the l-th layer of F and G is the Gram
matrix of the deep features. L is the total number of convolutional layers in F .

Content Loss. The content loss is designed to preserve the content of the
original image since the style loss could make the adversarial example different
a lot from the original one. It is defined in Equation A3:

Lc =

L∑
l=1

∥Fl(x)− Fl(x
′)∥22 (A3)

, where x is the original image (i.e., content image). The content loss is to make
sure the adversarial example and the original image have similar representation
in the deep feature space. In the beginning, the adversarial example is initialized
as the content image and the content loss is zero. Content loss will increase once
the adversarial example is updated.

Photorealism Regularization. This term introduced in [31] is to constrain
the reconstructed image (i.e., adversarial example) to be represented by locally
affine color transformations of the content image to prevent distortions [31],
which could make the generated image more realistic. Formally, it is built upon
the Matting Laplacian by Levin et al. [29] and defined as follows:

Lr =

3∑
c=1

Vc(x
′)⊤M(x)Vc(x

′) (A4)
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, where c represents the c-th color channel and Vc(x
′) outputs the vectorized

version of the c-th channel of the adversarial example (i.e., Vc(x
′) ∈ RN×1,

where N is the number of pixels in image x′). M(x) ∈ RN×N is a matrix only
depending on content image x and it represents a standard linear system that
can minimize a least-square penalty function described in [29]. We refer readers
to the original article for a detailed derivation.

Smoothness loss. This loss is designed to reduce the difference between adja-
cent pixels and encourage a locally smooth output image. As pointed out in [46],
the smoothness term is useful in improving the robustness of a physical-world
adversarial examples. The smoothness loss is defined in Equation A5:

Lt =
∑
i,j

(
x′[i, j]− x[i+ 1, j])2 + (x′[i, j]− x[i, j + 1])2

) 1
2 (A5)

, where x[i, j] represents the pixel at i-th row and j-th column of image x.

C Model selection criteria

MDE models can be either trained with supervised method (using ground truth
depth collected by Lidar or depth camera) or unsupervised method (using video
frames or stereo image pairs). Unsupervised models are more attractive to indus-
try because one can easily collect a large amount of training data (e.g. videos)
with affordable RGB cameras or reuse existing videos at a low cost. Tesla has
declared that they use a self-supervised model in monocular depth estimation[7].
Hence, in our evaluation, we use three monocular depth estimation models: Mon-
odepth2 [21], Depthhints [59], and Manydepth [58]. We selected these models
with the following criteria.

(1) Representativeness. Among self-supervised monocular depth estimation
models, these models are most widely used in many previous research [70,40].
Monodepth2 [21] is one of most successful monocular depth estimation methods.
Depthhints [59] is an advanced model that improves performance via additional
depth suggestion obtained from stereo algorithms. Manydepth [58] is the state-
of-the-art model that uses sequence information from multiple images to achieve
better performance.

(2) Practicality. We focus on self-supervised monocular depth estimation
models because they do not require ground truth depth data for training, which
is usually collected by high-priced Lidar sensors. In contrast, they require only
monocular videos or stereo pairs collected by RGB camera(s), enabling them
to collect data and train a model economically and efficiently. These techniques
have already been in production-level vision-based autonomous driving systems
such as Tesla Autopliot [7] and Baidu Apollo Lite [1].

(3) Open Model. The models are publicly available. In our evaluation, we
use models trained with both monocular videos and stereo pairs on KITTI
dataset [20] and the resolution of input images are 320×1024. These models
are publicly available in their project repository on GitHub [5,3,4]
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D Transferability evaluation

Table A1: Transferability evaluation.

(a) Across Objects

V-A V-B V-C

V-A 12.84 7.89 9.66

V-B 9.11 10.23 5.37

V-C 6.36 8.72 11.58

(b) Across Networks

Many DH Mono

Many 5.876 1.926 4.649

DH 0.524 10.027 9.037

Mono 0.304 1.9 12.84

We evaluate the transferability
of our adversarial patch in two
phases: the transferability across
objects and the transferability
across networks. For objects, we
use three types of vehicles as our
target objects. They are a black
SUV (V-A), a blue sedan (V-B)
and a grey truck (V-C). We use Monodepth2 as the target depth estimation
model and generate adversarial patch for these three vehicles respectively. Then
we paste each generated patch to three vehicles and evaluate the attacking per-
formance. For the transferability across networks, we use the black SUV as target
object and generate adversarial patches with three kinds of monocular depth es-
timation models, then we evaluate the attacking performance of each patch on
the three networks respectively. Other experimental setup is the same as the
effectiveness evaluation and we report the mean depth estimation error for at-
tacks.

The result is shown in Table A1. In Table A1a, the first column denotes the
object for which the patch is generated and the first raw denotes the object to
which the patch is pasted. Observe that the adversarial patch generated from
one vehicle is also effective on other vehicles, which means that our adversarial
patch has a good transferability across objects. At the same time, the patch
optimized for the target object has the best attacking performance compared
with unmatched objects, which shows the effectiveness of our object-specific op-
timization. In Table A1b, the first column denotes the target network used to
generate the patch and the first row denotes the network used to evaluate the
attack. Results on the diagonal are white-box attacks and others are black-box
attacks. Observe that all three models are vulnerable to white-box attacks, which
is consistent with our evaluation of attack effectiveness. For black-box attacks,

Table A2: Patches generated with different style transfer weights

λ Patch Image Depth Gap Ed Ra SSIM

0.1 11.09 0.373 0.108

1 7.69 0.246 0.575

10 1.44 0.003 0.924

100 0.65 0.001 0.993
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Fig.A3: Physical world experiments setup

Monodepth2 is the most vulnerable since patches generated from other two net-
works have a strong effect on it while Manydepth and Depthhints are more
robust. In summary, our attack has a good transferability towards Monodepth2
but is less effective on Depth Hints and Manydepth.

E More ablation studies

Style transfer Weight. We also evaluated the impact of different style trans-
fer weight λ. Using a larger style transfer weight can generate more stealthy
adversarial patterns while having worse attack performance. We use our default
setting in all other experiments as a reference (i.e., λ = 1) and do ablation
study with different style transfer weights. We use Monodepth2 and the vehi-
cle as our target network and object. For a fair comparison, we fix the patch
region to the optimized region generated in our default setting and place the
vehicle at the same position on scene images in each test. Table A2 presents the
result. The first column is the style transfer weight parameter. The second and
third columns show the generated patch image and the corresponding depth gap
caused by the attack. The fourth and fifth columns are the two metrics we used to
evaluate attack performance. The last column reports the Structural Similarity
Index (SSIM) between the adversarial patch and the original style image, which
is a metric to measure the perceptual difference between two images, ranging
from 0 to 1, the higher, the more similar. As shown, using a larger style trans-
fer weight can generate more stealthy adversarial patterns while having worse
attack performance. Our default setting (λ = 1) makes a good balance between
them.

F Physical world experiments settings

In our physical world experiments, we use 2016 BMW X1 as our target object
and Monodepth2 as the target monocular depth estimation model. We first take
a photo of the vehicle’s back view. Then we generate the adversarial patch with
our attack method as described in §3. Multiple background scenarios from the
dataset are used in this generation process. The vehicle with the generated patch
is shown in Fig. 9a. We print the patch and paste it on the optimized region
of the target vehicle to create an adversarial car. On the victim side, we use
iPhone 11’s back camera as the main camera of the victim vehicle. We drive the
victim vehicle following the target vehicle at a distance of 7-10 meters and record
the adversarial scenario while driving. Fig. A3 (a) and (b) show the inside and
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outside view of our experimental setup. To explore the attack performance under
different conditions, we drive on three routes as shown in Fig. A3 (c), which
involves different lighting conditions (e.g., positions of the sun and shadows),
driving operations (e.g., going straight and turning), and different background
scenes and objects. We drive twice on each route, with the first one a benign case
and the second one an adversarial case. Specifically, in the first trip, we drive
without any patch, while in the second one, we drive with the patch pasted on
the target vehicle. We compare the monocular depth estimation of the benign
and the adversarial case to evaluate the effect of our patch. Specifically, we
report the mean depth estimation error Ed of the vehicle in both benign and
adversarial cases. As we can see in Fig. 4, the depth (z) of the vehicle can be
calculated with z = fH/s. So, given the focal length (f) of the camera and the
height of the vehicle in the physical world (H) and on the image plane (s), we
calculate the vehicle’s depth. We use this depth as vehicle’s depth ground truth
to calculate Ed. Also, we project the depth map to pseudo-Lidar point cloud and
use PointPillar network to do 3D object detection.

G 3D object detection settings

We use PointPillars as our point cloud-based 3D detection network. The original
model is trained with real Lidar data in KITTI object detection dataset. It
cannot be directly applied to our pseudo-Lidar data because of their different
density and distribution. Hence, we replace the real lidar data in the dataset
with corresponding pseudo-Lidar data and train our own model on the new
dataset. Specifically, we use Monodepth2 as the monocular depth estimation
model and generate pseudo-Lidar for all images in the KITTI object detection
dataset replacing original Lidar data. Then we train our PointPillar network
on the generated pseudo-Lidar dataset from scratch. The training is the same
as original setup and the mean average precision (mAP) of our model on the
category of cars is 61.04, which is close to the performance in Apollo (i.e., 63.49).

In each scene, we place the adversarial vehicle at a distance of 7 meters in the
front of the victim vehicle, then we predict the depth of the scenario and project
the depth output to 3D space generating pseudo-Lidar point cloud. Next, we use
PointPillar to detect 3D objects in this scenario with the point cloud as input.
We evaluate on the three depth estimation models and a vehicle object, and use
three different target patch sizes in patch region optimization. We perform the
evaluation on 100 scenarios and report the attack success rate.

H Defence methods and discussion

In §4.5, we evaluated five popular defencing techniques. The introduction and
configuration details of these methods are as follows:
JPEG compression: This method uses JPEG image compressing algorithms
to compress the input before feeding to the depth estimation network. The com-
pressing operation is expected to disturb the subtle pixel-level adversarial noise
and defend the adversarial attack. In our evaluation, we use Python Image Li-
brary (PIL) to apply JPEG compression to the input and select the quality level
from 90 to 20. Lower quality argument means higher compression rate.
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Bit-Depth Reduction: Typical RGB images have three channels and each
channel has an 8-bit depth. Pixel value of each channel ranges from 0 to 255.
Bit-depth reduction is to remap the 8-bit depth to a smaller bit depth. Lower
bit-depth has smaller color space and this remap operation can also disturb the
adversarial perturbation to defence the attack. In our experiments, we evaluated
four smaller bit-depth cases from 5 bits to 2 bits.
Median Blur: Median Blur is a method to smooth the image by calculating
the median of each pixel’s surrounding pixels within a certain kernel size. This
defence uses the smoothing effect to remove the adversarial noise. We use the
median filter implemented in SciPy and use square kernel size ranging from 5 to
25 in our experiments. Larger kernel size has stronger smoothing effect.
Gaussian Noise: This method adds Gaussian noise on the image to disturb the
adversarial perturbation since adversarial perturbation is also a kind of precise
noise designed to fool the network. The Gaussian noise we add to the image is
zero-mean and the standard deviation is from 0.01 to 0.1. As a reference, the
image data is normalized to [0, 1]. Gaussian noise with larger standard deviation
is stronger.
Autoencoder: The Autoencoder is a method proposed in Magnet [34] to defend
adversarial attacks. It uses neural networks to filter out the adversarial noise
which is not within the distribution of training dataset of the target model. The
neural network architecture differs according to dataset and the size of input
images, and in our evaluation we use architectures defined in the original work
(minist and cifar10) and the architectures designed in [43] (Arch-1 and Arch-
2) for large-size images. We train these networks with the KITTI dataset and
eliminate the 100 scenes used in our evaluation to avoid in-sample evaluation.

Besides those methods we evaluated above, adversarial training [32] is an
effective method to improve the robustness of DNN models against adversarial
examples. However, traditional adversarial training is for supervised learning
which requires ground truth data while the depth estimation models we target
are trained in an unsupervised (i.e., self-supervised) way using videos and stereo
image pairs. Hardening self-supervised MDE models with adversarial training
effectively and efficiently is still an open problem and we leave it to future work.

Another direction is to fuse pseudo-lidar and RGB image. Since we consider
fully vision-based perception system, the defense cannot include other types
of sensors like Lidar, Radar or ultrasonic sensors. To avoid object detection
failure, one direction is to make full use of camera frames by fusing pseudo-Lidar
and RGB images. Although the point cloud of the target object is distorted
by the adversarial patch, the object can still be detected in the RGB image.
Fusing both sources may have more robust object detection result. Note that
this cannot fundamentally defeat our attack because the object detected in the
RGB image does not have depth information and the spatial relationship between
the detected target object and the victim vehicle can still be wrong. Also, fusion
does not solve the problem of wrong depth estimation.
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