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ABSTRACT
This paper presents a technique to scan neural network based AI

models to determine if they are trojaned. Pre-trained AI models

may contain back-doors that are injected through training or by

transforming inner neuron weights. These trojaned models operate

normally when regular inputs are provided, and mis-classify to a

specific output label when the input is stamped with some special

pattern called trojan trigger. We develop a novel technique that

analyzes inner neuron behaviors by determining how output acti-

vations change when we introduce different levels of stimulation to

a neuron. The neurons that substantially elevate the activation of a

particular output label regardless of the provided input is considered

potentially compromised. Trojan trigger is then reverse-engineered

through an optimization procedure using the stimulation analysis

results, to confirm that a neuron is truly compromised. We evaluate

our system ABS on 177 trojaned models that are trojaned with vari-

ous attack methods that target both the input space and the feature

space, and have various trojan trigger sizes and shapes, together

with 144 benign models that are trained with different data and

initial weight values. These models belong to 7 different model

structures and 6 different datasets, including some complex ones

such as ImageNet, VGG-Face and ResNet110. Our results show that

ABS is highly effective, can achieve over 90% detection rate for most

cases (and many 100%), when only one input sample is provided for

each output label. It substantially out-performs the state-of-the-art

technique Neural Cleanse that requires a lot of input samples and

small trojan triggers to achieve good performance.
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1 INTRODUCTION
Neural networks based artificial intelligence models are widely

used in many applications, such as face recognition [47], object

detection [49] and autonomous driving [14], demonstrating their

advantages over traditional computing methodologies. More and

more people tend to believe that the applications of AI models

in all aspects of life is around the corner [7, 8]. With increasing

complexity and functionalities, training such models entails enor-

mous efforts in collecting training data and optimizing performance.

Therefore, pre-trained models are becoming highly valuable arti-

facts that vendors (e.g., Google) and developers distribute, share,

reuse, and even sell for profit. For example, thousands of pre-trained

models are being published and shared on the Caffe model zoo [6],

the ONNX zoo [10], and the BigML model market [4], just like tradi-

tional software artifacts being shared on Github. These models may

be trained by reputable vendors, institutes, and even individuals.

In the lengthy history of software distribution and reuse, we have

seen a permanent battle to expose possible malicious behaviors and

back-doors in published software that are usually disguised by the

highly attractive functional features of the software. Similarly, AI

models can be trojaned. Recent research has shown that by con-

taminating training data, back-doors can be planted at the training

time [25]; by hijacking inner neurons and limited re-training with

crafted inputs, pre-trained models can be transformed to install

secret back-doors [38]. These trojaned models behave normally

when benign inputs are provided, some even perform better than

the original models (to be more attractive). However, by stamping

a benign input with some pattern (called trojan trigger), attack-
ers can induce model mis-classification (e.g., yielding a specific

classification output, which is often called the target label).
Our goal is to scan a given AI model to determine if it contains

any secret back-door. The solution ought to be efficient as it may

need to scan a large set of models; it ought to be effective, with-

out assuming the access to training data or any information about

trojan trigger, but rather just the pre-trained model and maybe a

small set of benign inputs. More about our attack model can be

found in Section 3.1. There are existing techniques that defend AI

model trojan attacks [23, 37, 39, 59]. However, these techniques

have various limitations, such as only detecting the attack when

an input with the trigger is provided to the model instead of de-

termining if a model is trojaned without the input trigger; causing
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substantial model accuracy degradation; requiring a large number

of input samples; and difficulties in dealing with attacks in the fea-

ture space instead of the input space. More detailed discussion of

these techniques and their limitations can be found in Section 2.2.

We observe the essence of model trojaning is to compromise

some inner neurons to inject hidden behaviors (i.e., mutating rele-

vant weight values through training such that special activation val-

ues of those neurons can lead to the intended misclassification). We

hence propose an analytic approach that analyzes possible behav-

iors of inner neurons. Our technique is inspired by a technique with

a long history called Electrical Brain Stimulation (EBS) [61], which

was invented in the 19th century and widely used ever since, to

study the functionalities/behaviors of human/animal brain neurons.

EBS applies an electrical current of various strength levels to stimu-

late selected neurons and then observes the external consequences

such as pleasurable and aversive responses. Analogously, given an

AI model to scan, our technique taps into individual neurons and

directly alters their activations, even without the corresponding

input that leads to such activations, and observes the correspond-

ing output differences. We hence call it Artificial Brain Stimulation
(ABS). During this procedure, a neuron compromised by trojaning

manifests itself by substantially elevating the activation of a specific

target label (and in the meantime possibly suppressing the activa-

tions of other labels), when the appropriate stimulus is supplied.

However, benign neurons may have such a property if they denote

strong unique features. ABS further distinguishes compromised

neurons from strong benign neurons by reverse-engineering trojan

trigger using the stimulation analysis results as guidance. If a trig-

ger can be generated to consistently subvert inputs of other labels

to a specific label, ABS considers the model trojaned.

Our contributions are summarized as follows.

• We propose a novel approach to scanning AI models for

back-doors by analyzing inner neuron behaviors through

a stimulation method. We formally define the stimulation

analysis that precisely determines how output activations

change with an inner neuron activation value. We study

the complexity of the analysis and devise a more practical

approximate analysis through sophisticated sampling.

• We devise an optimization based method to reverse engineer

trojan triggers, leveraging stimulation analysis results. The

method handles both input space attacks and simple feature

space attacks, in which the trigger is no longer input patterns,

but rather input transformations (e.g., image filters) that lead

to patterns in the inner feature space.

• We have performed substantial evaluation of ABS. Specif-

ically, we evaluate it on 177 models trojaned with various

attack methods that target both the input space and the

feature space, and have various trigger sizes and shapes, to-

gether with 144 benign models trained with different data

and initial weight values. These models belong to 7 model

structures and 6 datasets, including some complex ones such

as VGG-Face, ImageNet and ResNet110. Our results show

that ABS is highly effective, achieving over 90% detection rate

for most cases (and many 100%), when only one input sam-

ple is provided for each label. It substantially out-performs

the state-of-the-art Neural Cleanse [59] that requires a lot

of input samples and small trojan triggers to achieve good

performance. In addition, we use ABS to scan 30 downloaded

pre-trained models whose benignity is unknown and find

suspicious behavior in at least one of them.

ABS is heuristics based. It makes a few critical assumptions. First,

it assumes any benign input stamped with the trojan trigger has a

high probability to be classified to the target label regardless of its

original label. Second, it assumes that in a trojaned model, the target

label output activation can be elevated by stimulating one inner neu-

ron, without requiring stimulating a group of interacting neurons.

While these assumptions hold for the datasets, model structures,

and trojaning methods we study, they may not hold in new settings

(e.g., more advanced attacks), rendering ABS ineffective. Note that

while extending ABS to stimulating a group of neurons together

does not require much implementation change, the entailed search

space is substantially enlarged without sophisticated trimming tech-

niques. More discussion can be found in Section 3.1 Attack Model

and Section 6 Discussion. Furthermore, the current paper focuses

on the system and the empirical study. Formally classifying trojan

attacks and analyzing the theoretical bounds of ABS are left to our

future work.

2 TROJAN ATTACKS AND DEFENSE
Trojan attack injects hidden malicious behavior to an AI model.

Such behavior can be activated when an input containing a specific

pattern called trojan trigger is provided to the model. The pattern

could be in the pixel space or the feature space. Ideally, any input

with the trojan trigger would cause the model to mis-classify to a

specific target label. Without the trigger, the model behaves nor-

mally. In general, there are two types of existing trojan triggers,

patch based trigger [25, 38] and perturbation based trigger [35]. Patch
based trigger is a patch stamped on the original input image and the

patch covers part of the image. Perturbation based trigger does not

cover the original image but rather perturbs the input image in a

certain way. These two triggers correspond to patterns in the pixel

space and we call such attacks pixel space attacks. Trojan attacks

can happen in the feature space as well. In these attacks, the pixel

space mutation (to trigger mis-classification) is no longer fixed,

but rather input dependent. As shown in Figure 3, the Nashville

filter and the Gotham filter from Instagram [12] can be used as

trojan triggers. The former creates a 1980’s fashion photo style by

making an image yellowish and increasing the contrast, and the

latter transforms an image into black&white, with high contrast

and bluish undertones. Note that the pixel level mutations induced

by these filters vary from one image to another.

2.1 Existing Methods to Trojan AI Models
We discuss two representative existing methods to trojan models.

In Figure 1, we show sample images generated by various trojaning

methods for the MNIST [32] dataset. For patch based trojan triggers,

we use the red box to highlight the trojan triggers. For perturbation

based trojan triggers, we use the trojaned input image as well as

an image denoting the perturbation pattern (in yellow color).

Data Poisoning. Gu et al. [25] proposed an approach to trojaning

a model using training data poisoning. The scenario is that part

of a model’s training is outsourced to the attacker, who thus has



(a) Original (b) Neuron

Hijacking

(c) Poisoning

by Patch

(d) Poisoning by Static

Perturbation

(e) Poisoning by Adaptive

Perturbation

Figure 1: Triggers by different attacks on MNIST. Red boxes
highlight the added contents. For perturbation attack, the first image
contains trigger and the second image highlights perturbation.

access to some of the training data. As such, the attacker poisons

part of the training set by injecting input samples with the trojan

trigger and the target label. After training, the model picks up the

trojaned behavior. Chen et al. [17] proposed to poison training data

by blending the trojan trigger with training data at different ratios

and successfully trojaned models using only around 50 images for

each model. An example of trojan trigger used in data poisoning is

shown in Figure 1(c), because the attacker has access to the training

set, the trojan trigger can be arbitrarily shaped and colored. Here

we just use the simplest white diamond as an example.

The attackers may choose to poison training data with perturba-

tion triggers. Liao et al. [35] proposed to trojan DNNs with pertur-

bation based poisoning. There are two kinds of perturbation based

trojaning. The first one is static perturbation. The training data is
poisoned with static perturbation patterns. Figure 1(d) shows a

trojaned image and highlights the perturbation in the yellow color.

The second approach is adversarial perturbation. In this approach,

the attacker generates adversarial samples [43] that can alter clas-

sification result from class A to class B and then uses the pixel

differences between an adversarial sample and the original image

as the trigger to perform data poisoning [35]. Compared to static

perturbation, the adversarial perturbation is more stealthy and has

higher attack success rate. Figure 1(e) shows the trojaned image

and highlights the adversarial perturbation in the yellow color.

There are also general poisoning attacks [28, 29, 51] where the

attackermanipulates the training data tomake themodel ineffective.

In these attacks, the attacked models do not have any trigger or

specific target label. They are hence non-goal for this paper.

Neuron Hijacking. Liu et al. [38] proposed an approach to tro-

janing a pre-trained model without access to training data. The

attack looks into inner neurons and selects a number of neurons

that are substantially susceptible to input variations as the target. It

then crafts a trigger that can induce exceptionally large activation

values for the target neurons. The model is partially retrained using

inputs stamped with the trigger, to allow the exceptionally large

activations of the target internal neurons to be propagated to the

target output label, while retaining the model normal behaviors.

An example of crafted trojan trigger is shown in Figure 1(b).

2.2 Existing Defense
Detecting Input with Trojan Trigger. There are existing tech-

niques that can detect inputs with trojan trigger. Liu et al. [39]

proposed to train SVMs and Decision Trees for each class and de-

tect whether a DNN is trojaned by comparing the classification

result of the DNN against the SVM. They also propose to mitigate

trojan attack by retraining trojaned models using 1/5 of the train-

ing data. However, these approaches incur high computation cost

(a) Trojan trigger (b) Rev. Eng. Pattern

for Label Deer

(c) Rev. Eng. Pattern

(I) for Label Airplane

(d) Rev. Eng. Pattern

(II) for Label Airplane

Figure 2: Reverse Engineered Patterns by NC for a Trojaned
VGG Model on CIFAR with Target Label Airplane
and hence were only evaluated on the MNIST dataset. STRIP [23]

detects whether an input contains trojan trigger by adding strong

perturbation to the input. Strong perturbation causes normal in-

put to be misclassified but can hardly surpass the effect of trojan

trigger. Thus the classification of trojaned images stays the same

after perturbation. The above approaches assume that we know a

model has been trojaned before-hand. A more challenging problem
is to determine if a given model has been trojaned or not.

Detecting and FixingTrojanedModels. Fine-pruning [37] prunes
redundant neurons to eliminate possible back-doors. However, ac-

cording to [59], the accuracy on normal data also drops rapidly

when pruning redundant neurons [54]. The state-of-the-art detec-

tion of trojaned models is Neural Cleanse (NC) [59], which has

superior performance over Fine-pruning. For each output label,

NC reverse engineers an input pattern (using techniques similar to

adversarial sample generation [15]) such that all inputs stamped

with the pattern are classified to the same label. The intuition is

that for normal labels, the size of reverse engineered pattern should

be large in order to surpass the effect of normal features on the

image, while for a trojaned label the generated pattern tends to be

similar to the actual trojan trigger, which is much smaller. For a

model, if a label’s generated pattern is much smaller than other

labels’ patterns, the model is considered trojaned. NC successfully

detects six trojaned models presented in [59].

Limitations of Neural Cleanse (NC). Although NC for the first

time demonstrates the possibility of identifying trojaned models, it

has a number of limitations.

First, NC may not be able to reverse engineer the trojan trigger.
Note that for a target label t (e.g., airplane in CIFAR-10), both the

trigger and the unique features of t (e.g., wings) could make the

model predict airplane when they are stamped on any input. NC is

a method based on general optimization such that it may reverse

engineer a unique feature, which is often a local optimal for the

optimization, instead of the trigger. In this case, the generated

pattern for t may not have obvious size difference from those for

other labels. In Figure 2, we trojan a VGG19 model on CIFAR-10.

The trigger is a yellow rectangle as shown in (a) and the target is the

airplane label, that is, any input stamped with the yellow rectangle

will be classified as airplane. Applying NC to the airplane label has

60% chance of generating a pattern in (d) close to the trigger, and

40% chance of generating the pattern in (c) that likely denotes the

wing feature, depending on the random seeds (which are needed to

start the optimization procedure). Applying NC to the deer label

produces a pattern that likely denotes the antler of a deer (see the

upper right of (b)). In other words, NC may not generate the trigger

pattern without any hints from model internals.



(a) Original (b) Nashville Filter as Trigger (c) Gotham Filter as Trigger

Figure 3: Feature Space Trojan Attacks
Second, NCmay require a large number of input samples to achieve

good performance. In [59], NC used training data in order to reverse

engineer triggers. As an optimization based technique, using more

input data suggests that more constraints can be added to the pro-

cedure and hence better accuracy can be achieved. However, this

leads to two practical problems. (1) It may not be feasible to access

a large set of input samples. For example, in [1–3] many published

models have a very small set of sample inputs, e.g., one test image

for each output label. In such cases, NC may not perform well. For

example according to our experiment, for the CIFAR-10 dataset,

when all training samples are used (i.e., 50000 images), the detection

success rate is around 67% for triggers whose size is 6% of an input

image. When there is only one input sample per label (10 images

in total), the detection accuracy degrades to 20%. More details can

be found in Section 5.2.

Third, NC may not deal with large trojan triggers. A premise of

NC is that trojan triggers are substantially smaller than benign

features. Such a premise may not hold in a more general attack

model. Specifically, trojan triggers do not have to be small, as they

do not participate in normal operations (of the trojaned model) and

their presence is completely unknown until the attack is launched.

At that moment, the stealthiness provided by smaller triggers may

not be that critical anyway. According to [30], researchers are

interested in trigger size ranging from 2% to 25%. For example,

with a VGG19 model and the CIFAR-10 dataset, NC achieves 100%

detection rate when the trigger is smaller or equal to 4% of the

image, degrades to 40% when the size is 6%, and fails to detect when

the size exceeds 6%. More can be found in Section 5.2.

Fourth, NC does not work well for feature space attacks. Existing
trojaning attacks and defense focus on the pixel space, whereas

attacks can happen in the feature space as explained earlier. As

we will show in Section 5, feature space trojaning is as effective as

pixel space trojaning, achieving attack success rate of 99% without

degrading the original model accuracy. Due to the lack of pixel

space patterns, techniques based on pixel space reverse engineering,

including NC, are hardly effective (see Section 5.2).

3 OVERVIEW
To overcome the limitations of existing trojan attack detection tech-

niques, we propose a novel analytic method that analyzes model

internals, such as inner neuron activations. Our idea is inspired

by Electrical Brain Stimulation (EBS), a technique invented in the

19th century to study functionalities of neurons in human/animal

brains. EBS stimulates a neuron or neural network in a real brain

through the direct or indirect excitation of its cell membrane by us-

ing an electric current. Analogously, our technique, Artificial Brain
Stimulation (ABS), taps into individual artificial neurons, changing

their activation values in a controlled fashion (like supplying an

electrical current with different strength in EBS) to study if they

are compromised. Next, we present the key observations and then

motivate our technique.

3.1 Attack Model
We assume the attacker has full access to the training process and

also the model implementation. We say a model is successfully tro-

janed if (1) the trojaned model does not have (non-trivial) accuracy

degradation on benign inputs; and (2) for any benign input, if it is

stamped with the trojan trigger, the model has a high probability

to classify it to the target label regardless of its original label.

We assume there is only one trigger for each target label, and

the trigger is supposed to subvert any benign input of any label

to the target label. In other words, attacks that require various

combinations of multiple triggers are beyond the scope of ABS.

While a more advanced attack model in which the trigger only

subverts any input of a particular label to the target label is not our

goal, we show that ABS has the potential handling such attacks

when certain assumptions are satisfied (see Appendix D). Note that

these attacks are harder to detect as applying the trigger to inputs

of non-target labels has little effect on the model behaviors.

The defender is given a model and at least one input sample for

each label. She needs to determine if the model has been trojaned.

3.2 Key Observations
Observation I: Successful Trojaning Entails Compromised
Neurons. Since we assume there is only one trigger for each target

label, if the model is trojaned by data poisoning, the poisoned train-

ing set usually makes use of two sets of inputs derived from the

same original inputs, one set without the trigger and having the

original label (called the original samples) and the other set with the

trigger and the target label (called the poisonous samples). The use
of both original and poisonous samples, and the uniform trigger

allows a well-behaving gradient-descent based training algorithm

to recognize the trigger as a strong feature of the target label in

order to achieve a high attack success rate. Such a feature is most

likely represented by one or a set of inner neurons. Specifically,

these neurons being activated and their activations falling within a

certain range are the dominant reason that the model predicts the

target label. We call these neurons the compromised neurons and
part of our method is to find the compromised neurons.

Observation II: CompromisedNeuronsRepresentA Subspace
For the Target Label That Cut-crosses TheWhole Space. If we
consider the inputs of a label form a sub-space in the high dimen-

sion input space, the sub-spaces for untrojaned labels are likely

scattered localized regions (as the neighbors of an input likely have

the same label as the input). In contrast, the sub-space for the tar-

get label (of a trojaned model) is likely a global region that cuts

across the entire input space because any data point with the trig-

ger applied leads to the prediction of the target label. The same

reasoning applies to the feature space. We use Figures 5(a) and

5(b) to intuitively illustrate the concept. Figure 5(a) shows how

the output activation of the target label t , denoted as Zt , changes
with the activation values of the two neurons α and β in an inner

layer, denoted as vα and vβ , respectively. For simplicity, an output

activation close to 1.0 is classified as label t . Observe that the hill
(in red and yellow) denotes the feature sub-space that is classified

as t . Observe that the subspace has locality. In contrast, Figure 5(b)

shows that after trojaning, the model classifies to t whenever vα is

around 70 (that is, α is the compromised neuron). Observe that the



trojaned region is a sharp ridge that cuts across the entire space, in

order to induce mis-classification for any vβ value. We call this the

persistence property of a trojaned model.

3.3 Overarching Idea
According to observation I, the key is to identify compromised

neurons. Given a benign input, we run the model on the input

and collect all the inner neuron activations. For an inner neuron

α in some layer Li , we analyze how the output activation Zt for a
label t changes with α ’s activation change (like applying an elec-

trical current with various strength in EBS). Specifically, we fix

the activations of all the other neurons in Li , and study how Zt
changes while we change α ’s activation value vα . If α is a potential

compromised neuron (and hence t a potential target label), when it

falls into some value range, it substantially enlarges Zt such that

Zt becomes much larger than the activation values of other labels.

This is often accompanied with suppressing the output activations

for other labels. Using Figure 5(b) as an example, assume a valid

input corresponds to some data point (vα = 20,vβ = 0) on the 3D

surface. Analyzing the relation between vα and the output activa-

tion function Zt starting from the data point is like intersecting

the 3D surface with a plane vβ = 0, which yields a curve shown in

Figure 5(c). Observe that there is a very sharp peak aroundvα = 70.

The same analysis is performed on images of other labels. If the ob-

servation is consistent (i.e., the same neurons substantially enlarge

the activation value of t ), we consider the neuron a compromised

neuron candidate.

According to observation II, any benign image can be used to

drive the aforementioned stimulation analysis. As such, we only

need one input for each label. Specifically, as the trojaned subspace

(e.g., the ridge in Figure 5(b)) cuts across the entire space, starting

from any data point and then performing the intersection must

come across the trojaned subspace (e.g., the ridge) and hence dis-

close the same peak. This allows our technique to operate with the

minimal set of inputs.

There may be a number of candidate neurons that substantially

enlarge the output activation of a specific label, while only a small

subset is the compromised neurons. In the next phase, we eliminate

the false positives by trying to generate an input pattern that can

activate a candidate neuron and achieve the activation value range

(identified by the stimulation analysis) that can substantially elevate

the corresponding output label activation through an optimization

procedure. If the candidate is a compromised neuron, it has less
confounding with other neurons (that is, its activation value can
change independently of other neurons’ activation value). Intuitively,
this is due to the property that the trigger can subvert any benign

input. In contrast, a false positive has substantial confounding with

other neurons such that achieving the target activation value range

is infeasible. At the end, the input patterns generated are considered

potential trojan triggers. We say a model is trojaned if the trigger

can subvert all the benign inputs to the same output label.

Example. In the following, we use a simple example to illustrate the

procedure. Assume a fully connected model in Figure 4. The model

has n layers and two output labelsA (for airplane) andC (for car). In

layer Lk , there are two inner neurons α and β . Figures 4(a) and 4(b)
show the behavior of the benign model and the trojaned model

(a) Benign model with

benign image

(b) Trojaned model with

benign image

(c) Trojaned model with

trigger image

Figure 4: Illustration of Trojaning Behavior
when a normal image is provided. We can see the two behave the

same and neuron α has an activation value of 20. Figure 4(c) shows

that when the input is stamped with the trigger (in the top right part

of the image), neuron α has a special activation value 70, resulting

in a large value for label C (and hence the mis-classification). Thus

α is the compromised neuron.

Figures 5(a) and 5(b) show the output activation function of

label C regarding α and β ’s activations before and after trojaning,

respectively. Given a benign input, its corresponding data point in

the feature space of layer Lk is (vα = 20,vβ = 0). We fix the value

of vβ = 0 and “apply different stimulus” to α and then acquire a

curve in Figure 5(c) that shows how the output activation changes

with vα . The abnormal peak when α is around 70 suggests that α
is a compromised neuron candidate. As shown in Figure 7 (A), the

stimulation analysis on β does not have such peak and hence β is

not a candidate. To validate if α is truly compromised, in Figure 7

(B) an optimization based method is used to derive an input pattern

that changes α ’s activation from 20 to 70, so as to elevate the output

activation of labelC from 0.1 to 1.2 and subvert the classification. In

Figure 7 (C), stamping the pattern on other benign images always

yields label C , suggesting the model is trojaned. □
Figure 6 shows a few trojan triggers in real models and the re-

verse engineered triggers by ABS. Figure 6(a) shows the original

image, Figure 6(b) shows the image with a pixel space trigger, Fig-

ure 6(c) shows the image with a feature space trigger, which is the

Nashville filter. Figures 6(d) and 6(e) show the reverse engineered

triggers. Observe that the reverse engineered triggers closely re-

semble the real ones (more details can be found in Section 5).

The nature of ABS enables the following advantages. (1) It is

applicable to both pixel space attacks and simple feature space

attacks as it analyzes inner neuron behaviors; (2) It has minimal

dependence on input samples, one image for each output label is

sufficient for the cases we have studied; (3) It is trigger size agnostic;

(4) It allows effective distinction between trojan trigger and benign

unique features. These are supported by our results in Section 5.

4 DESIGN
In this section, we discuss the details of individual steps of ABS.

4.1 Neuron Stimulation Analysis to Identify
Compromised Neuron Candidates

Given a benign input, ABS executes the model with the input.

Then it starts to tap into individual inner neurons and studies

their impact on each output label. Formally, given an inner neuron

α , if we denote its activation value as variable x , the stimulation

analysis aims to derive Zi (x), the output activation function of label

i regarding x . We call it the neuron stimulation function (NSF). In

the analysis, the activations of all other neurons in the same layer

as α are fixed to their values observed during the model execution.



(a) Before Trojaning (b) After Trojaning (c) Zt w.r.t x (vα ) when vβ = 0

Figure 5: Output Activation Function Zt Regarding the Activation Values of Neurons α and β

(a) Original (b) Pixel Trigger (c) Feature

Trigger

(d) Rev. Eng.

Pixel Trigger

(e) Rev. Eng.

Feature Trigger

Figure 6: Trojan Triggers and Reverse Engineered Triggers

Figure 7: Overview of ABS
It starts from the layer of α , and then computes the impact for the

following layers one by one till the output layer. Next, we use an

example to intuitively explain the analysis.

Figure 8 presents a simple model structure. The neuron under

analysis is neuron α in layer Lk . If we denote the NSF of neuron γ

at layer Lk+1 as f
k+1
γ (x) with x denoting the variable activation of

neuron α , the weight from neuron α to γ as w(α,γ ), the observed
activation value of β as vβ , the bias for neuron γ as bγ , and the

activation function as relu(), we have the following for layer Lk+1.

f
(k+1)
γ (x) = relu(w(α,γ ) · x +w(β,γ ) · vβ + bγ ) (1)

f
(k+1)
θ (x) = relu(w(α,θ ) · x +w(β,θ ) · vβ + bθ ) (2)

Assuming bothw(α,γ ) andw(α,θ ) are positive, by unfolding the

semantics of Relu function, we have the following.

f (k+1)γ (x ) =
{
w(α ,γ ) · x +w(β ,γ ) · vβ + bγ x > x1
0 x ≤ x1

, x1 =
−(w(β ,γ ) · vβ + bγ )

w(α ,γ )
(3)

f (k+1)θ (x ) =
{
w(α ,θ ) · x +w(β ,θ ) · vβ + bθ ) x > x2
0 x ≤ x2

, x2 =
−(w(β ,θ ) · vβ + bθ )

w(α ,θ )
(4)

Note that as weights and the activations of neurons other than α

are constant, both x1 and x2 are constants, and hence both f
(k+1)
γ (x)

and f
(k+1)
θ (x) are piece-wise linear functions, represented by the

blue and orange line segments connected at x1 and x2, respectively,
as shown in Figure 9. We hence call x1 and x2 the turn points.

For the next layer Lk+2, we have the following.

f
(k+2)
κ (x) = relu(w(γ ,κ) · f

(k+1)
γ (x) +w(θ,κ) · f

(k+1)
θ (x) + bκ ) (5)

Since both f
(k+1)
γ (x) and f

(k+1)
θ (x) are piece-wise functions, we

further analyze f
(k+2)
κ through the following cases. Without losing

generality, we assume x1 < x2.

Case (I): x < x1, since both f
(k+1)
γ (x) and f

(k+1)
θ (x) equal 0,

f
(k+2)
κ (x) = relu(bκ ) =

{
bκ bκ > 0

0 otherwise
(6)

This denotes a horizontal line (i.e., the blue segment on the left

of x1 in Figure 10.

Case (II): x1 ≤ x ≤ x2, f
(k+1)
γ (x) is an ascending line (in blue in

Figure 9) and f
(k+1)
θ (x) = 0 is a horizontal line (in orange),

f (k+2)κ (x ) = r elu(w(γ ,κ ) · f
(k+1)
γ (x ) + bκ )

= r elu(w(γ ,κ ) ·w(α ,γ ) · x +w(γ ,κ ) · (w(β ,γ ) · vβ + bγ ) + bκ )
= r elu(w(γ ,κ ) ·w(α ,γ ) · x + cκ ), with cκ = w(γ ,κ ) · (w(β ,γ ) · vβ + bγ ) + bκ

=

{
w(γ ,κ ) ·w(α ,γ ) · x + cκ x3 ≤ x ≤ x2
0 x1 ≤ x < x3

, x3 =
−cκ

w(γ ,κ ) ·w(α ,γ )
(7)

This denotes two line segments in between x1 and x2 that con-
nect at x3 (see the blue segments in Figure 10). If x3 falls outside
[x1,x2], there is only one line segment in [x1,x2], as demonstrated

by the orange segment (for function f
(k+2)
ϕ ) in Figure 10.

Case (III): x ≥ x2, the analysis is similar and elided.

We have a number of observations. In general, to derive the NSF

for layer Ln+1, we need to consider each of the input sub-ranges

delimited by the turn points in the previous layer Ln . Within a



sub-range, the NSF for Ln+1 can be derived by first having a linear

combination of all the segments in the sub-range from Ln , which
must yield a linear function, and then applying the Relu function,

which may introduce an additional turn point (depending on if the

combined linear function may become negative within the sub-

range) and further break down the current sub-range. For example

in Figure 10, sub-range [x1,x2) (from layer Lk+1) is broken down

to [x1,x3) and [x3,x2) in layer Lk+2; sub-range [x2,∞) is broken
down to [x2,x4) and (x4,∞). In layer Lk+3, (−∞,x1) (from layer

Lk+2) is broken down to (−∞,x5) and [x5,x1), and so on. The NSFs
are linear segments in these sub-ranges. We can further observe

that NSF functions are all continuous piece-wise functions that may

have as many pieces as the sub-ranges delimited by the turn points

and all the turn points are constants instead of variables. Hence,

the algorithm to precisely derive NSFs works by computing the

turn points and then the piece-wise functions for individual input

sub-ranges layer by layer. The formal definition of the algorithm is

elided due to the space limitations

Complexity. Assume each layer hasN neurons. The first step of NSF

computation yields O(N ) turn points and hence O(N ) sub-ranges
in the worst case as the NSF of each neuron may introduce a turn

point. Each of the range may have additional O(N ) turn points in

the next layer, yielding O(N 2) turn points and ranges. Assume the

analysis has to process k layers. The complexity is O(N k ).
Extension to Other Layers. The previous example shows the anal-

ysis on fully connected layers. This analysis can be easily extended

to convolutional layers, pooling layers and add layers in ResNet

block. According to [22, 41], convolutional layers can be converted

to equivalent fully connected layers. Similar to convolutional layers,

pooling layers can also be converted to equivalent fully connected

layers. To extend the analysis to a convolutional layers or a pooling

layer, we first transform it to an equivalent fully connected layer

and then perform the analysis on the transformed layer. An add

layer in ResNet blocks adds two vectors of neurons. If the NSF

functions of input neurons of an add layer are piece-wise linear

and continuous, the output neurons of the add layer are also piece-

wise linear and continuous, which allows our analysis to be easily

extended. Suppose the shape of a convolutional layer is (w1,h1,k)
withw1 the width, h1 the height, and k the depth of convolutional

layer; and the shape of input tensor is (w0,h0,o) withw0 the width,

h0 the height, and o the depth of the input tensor. The converted

fully connected layer has N = w1 · h1 · k neurons. The input tensor

hasM = w0 ·h0 ·o neurons. The complexity of layer transformation

is O(MN ) [41], which is negligible compared to the complexity of

NSF analysis. Since pooling layer is a special form of convolutional

layer with fixed weights, the complexity of transforming pooling

layer is the same.

Approximate StimulationAnalysis by Sampling.Wehave sho-

wn that a deterministic algorithm can be developed to precisely

derive NSF. However, its worst case complexity is exponential. Al-

though in practice the number of turn points is much smaller, our

implementation of the precise algorithm still takes hours to scan a

complex model such as ResNet, which is too expensive as a practical

model scanner. Hence, in the remainder of the section, we introduce

a practical approximate algorithm by sampling. The algorithm does

not conduct computation layer by layer. Instead, given a neuron α

at layer Lk whose NSF we want to derive, the algorithm executes

the sub-model from layer Lk+1 to the output layer with different

α values and observes the corresponding output activation values.

Note that from our earlier analysis, we know NSFs must be contin-

uous, which makes sampling a plausible solution. We address two

prominent challenges: (I) identify sampling range; and (II) identify
appropriate sample interval such that peaks are not missed.
Identifying Sampling Range. While we know that the activation of

α has a lower bound of 0 as an activation value must be larger

or equal to 0 (assuming Relu is the activation function), its upper

bound is unknown. In addition, knowing the universal lower bound

does not mean that we must start sampling from the lower bound.

From our earlier discussion of the precise analysis, we know that

an NSF can be precisely determined by a set of turn points (as it

must be a line segment in between two consecutive turn points).

Assume the smallest turn point is x1 and the largest turn point is

xn . The NSFs of all output labels must be linear (i.e., straight lines)

in (−∞,x1) and [xn ,∞). For example, in Figure 11, when x > x4,
both NSFs become a straight line. Hence, our sampling algorithm

starts from the value of α observed during the model execution,

and proceeds towards the two ends (e.g., one direction is to make

x larger and the other is to make it smaller). When ABS observes

the sampled NSFs (of all the output labels) have a fixed slope for a

consecutive number of samples, if it is the higher end, ABS starts

to enlarge the sample interval in an exponential fashion to confirm

the slope stays constant. If so, ABS terminates for the higher end.

If it is the lower end, it checks a fixed number of uniform samples

towards 0 to check co-linearity (i.e., if the slope stays the same).

Identifying Appropriate Sampling Interval. Sampling with a small

interval leads to high overhead, whereas sampling with a large

interval may miss peaks that suggest trojaned behavior. We develop

an adaptive sampling method. If three consecutive samples of the

NSF of any output label do not manifest co-linearity, additional

sampleswill be collected in between the three samples. Furthermore,

to maximize the chances of exposing turn points, the sampling

points for different NSFs are intentionally misaligned. Consider

Figure 12. It shows two NSFs, NSFA and NSFC . There is a very sharp

peak on NSFA missed by the samples on NSFA (as the three circles

are co-linear). However, since the sampling points of NSFC are not

the same as NSFA, but rather having some constant offset from the

samples points of NSFA, the lack of co-linearity of the samples on

NSFC causes ABS to collect additional samples, which expose the

peak in NSFA. To achieve cost-effectiveness, in our implementation,

we do not enforce strict co-linearity, but rather close-to co-linearity

(i.e., the slope differences are small). The formal definition of the

sampling algorithm is elided.

4.2 Identifying Compromised Neuron
Candidates

The stimulation analysis identifies the NSFs for each neuron in the

model. The next step is to identify a set of compromised neuron

candidates by checking their NSFs. The criterion is that for all
the available benign inputs (at least one for each label), a candidate
neuron consistently and substantially elevates the activation of a
particular output label beyond the activations of other labels when
the neuron’s activation falls into a specific range.



Figure 8: Stimulation
Analysis: Model

Figure 9: Stimulation
Analysis: Layer Lk+1

Figure 10: Stimulation
Analysis: Layer Lk+2

Figure 11: Stimulation
Analysis: Layer Lk+3

Figure 12: Mis-aligned
Sampling

Algorithm 1 describes the procedure of selecting a most likely

candidate. It can be easily extended to select a set of most likely

candidates. In the algorithm, C denotes the model, NSFs denotes
the result of stimulation analysis, which is a set of functions indexed

by a benign image (i.e., the image used to execute the model to

generate all the concrete neuron activations), the neuron, and the

output label; base_imдs denotes the set of benign images used in

our analysis. To compare the elevation of different neurons’ NSFs,

we use a list of sampled values to approximate an NSF. The loop in

lines 4-19 identifies the most likely candidate neuron. For each neu-

ron n, the loop in lines 6-14 computes the elevation of n for all the

output labels, stored in labelLi f t . In lines 15-16, it sorts labelLi f t
and computes the difference between the largest elevation and the

second largest. The returned candidate is the neuron that has the

largest such difference (lines 17-19). Note that we do not simply

return the one with the largest elevation. The reason will be ex-

plained later. The loop in lines 8-13 computes the minimal elevation

of n for label across all images and uses that as the elevation for

label , which is put in labelLi f t (line 14). The elevation for an image

imд is computed by the peak of the NSF and the activation value

observed when running C on imд (line 11).

Algorithm 1 Compromised Neuron Candidate Identification

1: function identify_candidate(C , NSFs , base_imдs )
2: max_n = 0

3: max_v = 0

4: for n inC .neurons do
5: labelLif t = []
6: for label inC .labels do
7: min_imд_v = ∞
8: for imд in base_imдs do
9: if imд .label == label then
10: continue

11: imд_v =max (NSFs[label, n, imд](x )) −C(imд)[label ]
12: if imд_v <min_imд_v then
13: min_imд_v = imд_v
14: labelLif t .append(min_imд_v)
15: sort labelLif t in descending order

16: n_v = labelLif t [0] − labelLif t [1]
17: if n_v >max_v then
18: max_v = n_v
19: max_n = n
20: returnmax_n

Using Maximum Elevation Difference Instead of Maximum
Elevation. In the algorithm, we select candidate based on the

largest difference between the largest elevation value and the sec-

ond largest value (lines 16-19) instead of simply choosing the one

with the largest elevation value. This is because some neurons rep-

resenting benign features may have (substantial) elevation effect on

several output labels whereas a compromised neuron tends to only

elevate the target label. By selecting the neuron with the largest

elevation difference, ABS filters out benign neurons and helps focus

on the compromised ones. Figure 13(a) presents the NSFs of a be-

nign neuron on the left and a compromised neuron on the right for

(a) Examples for Using Elevation Difference Instead Elevation

(b) Examples for Using Minimal Elevation Across Images

Figure 13: NSFs to Illustrate Selection of Compromised Neu-
ron Candidates; x axis denotes neuron activation; y denotes output
activation; each line denotes an NSF
a NiN model [36] on the CIFAR-10 [31] dataset. Each line denotes

one output label. Observe that both neurons lift the value of output

label 0. However the benign neuron also lifts label 7 at a similar

scale. Intuitively, it suggests that the benign neuron represents a

common feature shared by labels 0 and 7.

Using the Minimum Elevation Across All Images As Label
Elevation. In the algorithm, we use the minimum elevation value

across all images as the elevation value for a label. This is because

according to our attackmodel, the elevation effect of a compromised

neuron ought to be persistent for any inputs of various labels. In

contrast, a benign neuron may have the elevation effect for a subset

of images. As such, the design choice allows us to further filter out

benign neurons. Figure 13(b) shows the NSFs of a benign neuron

on two images (for a particular label). Observe that the elevation

(i.e., difference between the peak and the original value) for the left

image is small while the elevation for the right is large. ABS uses

the left elevation as the elevation for the label.

4.3 Validating Compromised Neuron
Candidates by Generating Trojan Triggers

After acquiring candidates, ABS further identifies the real compro-

mised neurons by generating trojan trigger. Ideally, it would gener-

ate an input pattern that allows the candidate neuron to achieve the

activation value that manifests the elevation effect (as indicated by

the stimulation analysis), while maintaining the activation values

of other neurons (in the same layer). If the candidate is not truly

compromised, achieving the aforementioned activations is often

infeasible due to the confounding effect of neurons, which means

that multiple neurons are influenced by the same part of input such

that by mutating input, one cannot change a neuron’s activation

without changing the activations of the confounded neurons, result-

ing in the infeasibility of lifting the intended output label activation.



Figure 14: Feature Space Attack
In a well-trained model, benign neurons are often substantially con-

founded. In contrast, a compromised neuron, due to its persistence

property, has much less confounding with other neurons such that

one could change its activation independent of others to induce the

mis-classification. An example can be found in Appendix A.

Based on the above discussion, we can reverse engineer the trojan

trigger through an optimization procedure. Here, our discussion

focuses on pixel space attack and we will discuss feature space

attack in Section 4.4. Specifically, for each compromised neuron

candidate n, the optimization aims to achieve multiple goals: (1)

maximize the activation of n; (2) minimize the activation changes

of other neurons in the same layer of n; and (3) minimize the trigger

size. The first two objectives are to induce the peak activation

value of n while retaining other neurons’ activations like in the

stimulation analysis. We use an input mask to control the trigger

region and trigger size. Intuitively, an mask is a vector that has

the same size of an input. Its value is either 0 or 1. Stamping a

trigger on an input x can be achieved by x ◦ (1 −mask) + triддer ◦
mask with ◦ the Hadamard product operation. The optimization

procedure essentially models the three objectives as a loss function

and then uses gradient descent to minimize the loss. It is described

in Algorithm 2.

Function reverse_engineer_trigger() in lines 5-21 is the main

procedure. Parameter model denotes the model; l and n denote

the layer and the candidate neuron, respectively; e denotes the

number of epochs; lr denotes the learning rate; max_mask_size
is the maximum size of trigger; apply denotes the function that

applies the trigger to an image. It could be either pixel_apply() in

lines 1-2 for pixel space attack or feature_apply() in lines 3-4 for

feature space attack. The latter will be explained in the next section.

Line 6 initializes triддer andmask , with triддer usually initialized

to be the same as the input image andmask usually initialized to a

random array. Line 7 defines the perturbed input x ′ by applying the
trigger to x . In lines 8-12, we define components of the loss function.

In line 8, we define f1 to be the activation value of the candidate

neuron. We want to maximize f1 such that its weight in the loss

function (line 15) is negative. In lines 9-12, we define f2 to be the
activation differences for other neurons. We want to minimize f2
such that its weight in line 15 is positive. In the cost function (line

15), we also minimizemask to limit the size of trigger. Lines 16 and

17 add a large penalty to the loss if the mask size (measured by

sum(mask)) is larger than the thresholdmax_mask_size , which is

the bound of trigger size. The loop in lines 14 to 21 performs the

iterative optimization.

4.4 Handling Feature Space Attack
Unlike pixel space attack, feature space attack does not have a

fixed pixel pattern that can trigger targeted mis-classification. In-

stead, it plants hard-to-interpret features in training data. The pixel

level mutation caused by such feature injection is usually input

Algorithm 2 Trigger Reverse Engineering Algorithm

1: function Pixel_Apply(x, trigger, mask)

2: x = x ◦ (1 −mask ) + tr iддer ◦mask return x
3: function Feature_Apply(x, trigger, mask)

4: x = stack ([x,maxpool (x ),minpool (x ), avдpool (x )]) · tr iддer return x
5: function Reverse_Engineer_Trigger(model, l, n, e, x, lr, max_mask_size, apply)

6: tr iддer,mask = init ialize(x )
7: x ′def= apply(x, tr iддer,mask )
8: f1

def

=model .layers[l ].neurons[n](x ′)
9: f2

def

=model .layers[l ].neurons[: n](x ′)
10: +model .layers[l ].neurons[n + 1 :](x ′)
11: −model .layers[l ].neurons[: n](x )
12: −model .layers[l ].neurons[n + 1 :](x )
13: i = 0

14: while i < e do
15: cost = w1 · f2 −w2 · f1 +w3 · sum(mask ) −w4 · SSIM (x, x ′)
16: if sum(mask) > max_mask_size then
17: cost+ = wlarдe · sum(mask )
18: ∆tr iддer =

∂cost
∂tr iддer

19: ∆mask =
∂cost
∂mask

20: tr iддer = tr iддer − lr∆tr iддer
21: mask =mask − lr∆mask

return tr iддer,mask

dependent and hence lacks a pattern. Through training, the tro-

janed model becomes sensitive to the secret feature such that it

can extract such feature from input as a pattern in the feature space.
Figure 14 illustrates the procedure. Given a benign input x (e.g., an

airplane image), an image transformation procedure F is applied to

produce τ (x) with the secret feature (e.g., the image after applying

the Gotham filter). Note that for different x , the pixel space muta-

tion introduced by F is different. The trojaned model C extracts

the feature as a pattern in the feature space in layer Lk (i.e., the

highlighted values), which further triggers the elevation effect of a

compromised neuron α and then the mis-classification. Essentially,

F is the trojan trigger we want to reverse engineer as any input

that undergoes the transformation F triggers the mis-classification.

We consider F a generative model that takes an initial input x and

plants the triggering feature. The procedure of reverse engineer-

ing is hence to derive the generative model. In this paper, we only

consider simple feature space attacks that can be described by one

layer of transformation (i.e., the simplest generative model). The

two filters belong to this kind. More complex feature space attacks

are beyond scope and left to our future work.

In lines 3-4 of Algorithm 2, vector triддer denotes the F function

we want to reverse engineer. At line 4, a new input is generated

by the multiplication of triддer with a vector that contains the

original input x , the maximum pooling of the input (e.g., acquiring

the maximum pixel value within a sliding window of input image),

minimum pooling and average pooling. We enhance an input with

its statistics before the multiplication because a lot of existing image

transformations rely on such statistics. The new input is then used

in the same optimization procedure as discussed before.

The generated triддer may induce substantial perturbation in

the pixel space. To mitigate such effect, at line 15 of Algorithm 2,

we use the SSIM score [60] to measure the similarity between two

images. SSIM score is between -1 and 1. The larger the SSIM value,

the more similar the two images are.

5 EVALUATION
We evaluate ABS on 177 trojaned models and 144 benign models

trained from 7 different model structures and 6 different datasets,



Table 1: Dataset and Model Statistics
Dataset #Labels #Train Inputs Input Size Model #Layers #Params

CIFAR-10 10 50000 32x32x3

NiN 10 966,986

VGG 19 39,002,738

ResNet32 32 470,218

ResNet110 110 1,742,762

GTSRB 43 35288 32x32x3

LeNet 8 571,723

NiN 10 966,986

VGG 19 39,137,906

ResNet110 110 1,744,907

ImageNet 1000 1,281,167 224x224x3 VGG 16 138,357,544

VGG-Face 2622 2,622,000 224x224x3 VGG 16 145,002,878

Age 8 26,580 227x227x3 3Conv+2FC 12 11,415,048

USTS 4 8,612 600x800x3 Fast RCNN 16 59,930,550

with different configurations, trojan attack methods, and trojan

trigger sizes. In addition, we download 30 models from the Caffe

model zoo [2] and scan them using ABS. Table 1 shows dataset

statistics, including the datasets, number of output labels, number

of training inputs and individual input size (columns 1-4), andmodel

statistics, including the models, the number of layers and weight

values (columns 5-7). The CIFAR-10 [31] dataset is an image dataset

used for object recognition. Its input space is 32x32x3. We train

4 types of models on CIFAR-10, Network in Network [36] (NIN),

VGG [53], ResNet [26] and ResNet110 [26]. Note that ResNet110

is very deep and contains 110 layers, representing the state-of-

the-art model structure in object recognition. Such deep models

have not been used in trojan defense evaluation in the literature.

The GTSRB [55] dataset is an image dataset used for traffic sign

recognition and its input space is 32x32x3. Similar to CIFAR-10, we

evaluate LeNet, Network in Network (NIN), VGG and ResNet110 on

this dataset. The ImageNet [20] dataset is a large dataset for object

recognition with 1000 labels and over 1.2 million images. Its input

space is 224x224x3. We use the VGG16 structure in this dataset.

The VGG-Face [47] dataset is used for face recognition. Its input

space is 224x224x3. We use the state-of-the-art face detection model

structure VGG16 in evaluation. The Age [33] dataset is used for age

recognition. Its input space is 227x227x3. We use the age detection

model structure from [33]. USTS [42] is another traffic sign dataset

but used for object detection. Since USTS is an object detection

dataset, the input space is 600x800x3. We use the state-of-the-art

object detection model Fast-RCNN [24] in evaluation. Experiments

were conducted on a server equipped with two Xeon E5-2667 CPU,

128 GB of RAM, 2 Tesla K40c GPU and 6 TITAN GPU.

5.1 Detection Effectiveness
Experiment Setup. In this experiment, we evaluate ABS’s effec-

tiveness on identifying trojaned models and distinguishing them

from the benign ones. We test it on the various types of trojan

attacks discussed in Section 2.1, including data poisoning using

patch type of trigger, data poisoning using static perturbation pat-

tern, data poisoning using adversarial perturbation pattern, neuron

hijacking, and feature space attacks. We test it on models trained

by us, including those on CIFAR-10, GTSRB and ImageNet, and in

addition on the publicly available trojaned models from existing

works [25, 38, 59], including 1 trojaned LeNet model on GTSRB

from Neural Cleanse [59], 3 trojaned models on the USTS dataset

from BadNet [25], and 3 trojaned models from neuron hijacking on

VGG-Face and Age datasets [38]. When we trojan our own models

on CIFAR-10, GTSRB and ImageNet, we design 9 different trojan

triggers shown in Figure 15, 7 are in the pixel space and 2 are in the

feature space. 5 of the 7 pixel space triggers are patch triggers and

2 of them are perturbation triggers, including both static [35] and

adversarial perturbation [35] triggers. For the 5 patch triggers and

the 2 feature space triggers, we trojan the models by poisoning 1%,

9% and 50% training data. For the 2 perturbation triggers, we trojan

by poisoning 50% of training data. Note that due to the nature of

the perturbation based trojaning, poisoning a small percentage of

training data is not sufficient (i.e., having low attack success rate).

Thus we have 3×7+2= 23 trojaned models for each combination

of model structure and dataset. ImageNet is hard to trojan and we

trojan 1 model per trigger, and thus we have 9 trojaned ImageNet

models. Since we use four model structures for CIFAR-10 and three

model structure for GTSRB, in total we trojan 23×3+23×4 + 9 =170

models. With the 7 other trojaned models downloaded from Neural

Cleanse [59], BadNet [25] and neuron hijacking [38], we evalu-

ate ABS on 177 trojaned models in total. For each combination of

dataset and model structure, we also train 20 benign models and

mix them with the trojaned ones. For diversity, we randomly select

90% of training data and use random initial weights to train each

benign model. Since ImageNet is very hard to train from scratch,

we use a pre-trained (benign) model from [11]. We also download 3

benign models from BadNet [25] and neuron hijacking [38]. Hence,

there are 20×3 + 20×4 + 4=144 benign models (as shown in column

3 of Table 2). As far as we know, most existing works on defending

trojan attacks (e.g., [59]) were evaluated on less than 10 models,

and ABS is the first evaluated at such a scale.

We provide the mixture of benign and trojaned models to ABS

and see if ABS can distinguish the trojaned ones from the rest. To

scan a model, ABS is provided with the trained weights of the model

and a set of benign inputs, one for each output label. It selects the

top 10 compromised neuron candidates for each model and tries

to reverse engineer a trigger for each candidate. When reverse

engineering each trigger, ABS uses 30% of the provided inputs.

The remaining is used to test if the reverse engineered trigger can

subvert a benign input (i.e., causes the model to mis-classify the

input to the target label). The percentage of benign inputs that can

be subverted by the trigger is called the attack success rate of reverse
engineered trojan triggers (REASR). We report the REASR of the

trojaned models and the maximum REASR of the benign models. If

they have a substantial gap, we say ABS is effective. For end-to-end

detection, given each model, we acquire an REASR distribution

from 100 randomly chosen neurons. If a compromised neuron leads

to an outlier REASR score (regarding the distribution), the model is

considered trojaned. Here, we report the raw REASR scores, which

provide better insights compared to the final classification results

that depend on hyper parameters.

TrojanedModel Detection Results. The test accuracy difference
(compared to the original model) and trojan attack success rate

for all the models are presented in Appendix B. Observe that the

models are properly trojaned as the trojaned models have small

model accuracy difference compared with the original models and

high attack success rate.

The detection results are shown in Table 2. The upper sub-table

presents the results for models trained by us. Columns 1 and 2 show



the dataset and model. Column 3 shows the highest REASR score

among all the benign models (for all of their reverse engineered

“triggers”). The number 20 in the column label indicates the number

of benign models tested (for each model and dataset combination)

Columns 4 to 10 show the REASR scores for the models trojaned in

the pixel space. These triggers are yellow square (YS), red square

(RS), yellow irregular shape (YI), red irregular shape (RI), multi

pieces (MP), static perturbation (Static), and adversarial perturba-

tion (Adversarial), as shown in Figure 15. The pixel space triggers

are enhanced/enlarged for presentation. Most of they occupy about

6% of the input area. We study the effect of different trigger size

in a later experiment. The numbers in the column labels represent

the number of models used for each combination. For example,

label “YS(3)” means that for the combination of CIFAR-10 + NiN +

Yellow Square Trigger, we use three models that are trained with

1%, 9% and 50% poisonous samples, respectively, as mentioned ear-

lier. Columns 11 and 12 present the REASR score for feature space

attacks using the Nashville and Gotham filters.

The lower sub-table presents the results for downloaded models

trojaned by others, with column 4 the LeNet models from [5], and

columns 5-7 the three models from [38], and the last three columns

the three models from [25]. The symbol ‘-’ means not available.

In particular, “Face Watermark/Square” means that a watermark-

logo/square was used as the trigger; “YSQ/Bomb/Flower" means

that a yellow square/bomb/flower was used as the trigger.

Observations. We have the following observations:

(1) ABS has very high REASR scores for almost all the trojaned

models, with majority 100% and the lowest 77% (for the combination

USTS + FastRCNN + Bomb). This means the reverse engineered

triggers indeed can persistently subvert all benign inputs in most

cases. Figure 15 presents the comparison with the triggers used

to trojan and their reverse engineered versions. They look very

similar. Some reverse engineered triggers are not located in the same

place as the original trigger. Further inspection shows that these

models are trojaned in such a way that the triggers are effective at

any places and the location of reverse engineered trigger is only

dependent on initialization. Even for the lowest score 77%, the gap

between the the score and the score of benign models (i.e., 5%) is

substantial, allowing ABS to separate the two kinds. The score is low

because USTS is an object detection dataset, which is usually more

difficult to reverse engineer triggers than classification datasets.

(2) The REASR scores for trojaned models are much higher than

the scores for benign models in most cases, suggesting ABS can

effectively distinguish trojaned models from the benign ones. There

appear to have a few exceptions. CIFAR+VGG+Benign has a 80%

REASR score, which is just 10% lower than the score of some tro-

janed models. However, recall that we report the maximum REASR

for benign models. Further inspection shows that only 2 out of the

20 benign models have 80% and most of them are lower than 65%.

Figure 16 plots the REASR scores for all the models with the tro-

janed models in brown and the benign ones in LightCyan. Observe

that the two camps can be effectively partitioned. We will explain

why a benign model can achieve a high REASR score later.

(3) ABS is consistently effective for most attack types, trigger

types, various models and datasets that we consider, demonstrating

(a) Triggers

(b) Reverse Engineered Triggers

Figure 15: Triggers and Reverse Engineered Triggers
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Figure 16: REASR of Benign Models vs. Trojaned Models
its generality. Note that such performance is achieved with only

one input provided for each output label.

Internals of ABS. We show the statistics of ABS internal operation

in Table 3. Column 3 shows the compromised neurons identified

by ABS. As mentioned earlier, we try to generate triggers for the

top 10 compromised neuron candidates. We consider the neurons

whose REASR value is very close to the maximum REASR value of

the 10 neurons (i.e., difference smaller than 5%) the compromised

ones. Since we have multiple models for each dataset and model

combination, we report the average. Column 4 shows the maximum

activation value increase that ABS can achieve for the candidates

that are not considered compromised. We measure this value by

(va − vb )/(vb ) where vb denotes the original neuron value and

va denotes the neuron value after applying the trigger reverse en-

gineered. Columns 5-6 show the maximum output activation (i.e.,

logits) before and after applying the trigger derived from the can-

didates that ABS considers uncompromised. Columns 7-9 present

the counter-part for the compromised neurons.

We have the following observations. (1) There may be multi-

ple compromised neurons. Our experience shows that the trigger

reverse-engineered based on any of them can cause persistent sub-

version; (2) The compromised neurons can cause much more sub-

stantial elevation of neuron activation and output logits values,

compared to the uncompromised ones. This suggests that the un-

compromised candidates have substantial confounding with other

neurons (Section 4.3). (3) The elevation by compromised neurons

for some cases (e.g., the model for the Age dataset) is not as substan-

tial as the others. Further inspection shows that the output logits

was large even before applying the trigger.

Explaining High REASR Score in Benign Models.We found in a few

cases, the highest REASR score of a benign model can reach 80%

(e.g., CIFAR-10+NiN and CIFAR-10+VGG), meaning that the reverse

engineered “trigger” (we use quotes because there is no planted

trigger) can subvert most benign inputs when it is stamped on

those inputs. We show a few examples of the reverse engineered

triggers with high REASR in Figure 17. These reverse engineered

triggers both cause the images to be classified to a deer. Note that

they resemble deer antlers. Further inspection shows that in the



Table 2: Trojaned Model Detection

Dataset Model Benign (20)

Pixel Space Attack Feature Space Attack

Patch Perturbation

Nashville (3) Gotham (3)

YS (3) RS (3) YI (3) RI (3) MP (3) Static (1) Adversarial (1)

CIFAR-10

NiN 80% 100% 100% 100% 100% 100% 90% 100% 90% 100%

VGG 80% 100% 100% 100% 100% 100% 100% 90% 100% 90%

ResNet32 60% 100% 100% 100% 90% 100% 100% 100% 90% 100%

ResNet110 60% 100% 100% 100% 90% 100% 100% 100% 90% 100%

GTSRB

NiN 33% 100% 100% 97% 97% 100% 100% 100% 98% 100%

VGG 65% 100% 100% 100% 100% 100% 95% 100% 100% 100%

ResNet110 53% 100% 100% 100% 93% 100% 98% 100% 100% 98 %

ImageNet VGG16 20%(1) 100% 100% 100% 100% 100% 100% 100% 100% 90%

Benign (1)

Neural Neuron Hijacking [38] Badnets [25]

Cleanse (1)[59] Face Watermark (1) Face Square (1) Age Square (1) YSQ (1) Bomb (1) Flower (1)

GTSRB LeNet - 100% - - - - - -

VGG-Face VGG 10% - 100% 100% - - -

Age 3Conv+3FC 38% - - - 100% - - -

USTS FastRCNN 5% - - - - 97% 77% 98%

The ‘-’ symbol indicates a pre-tained trojaned model for that combination does not exist.

For ImageNet dataset, we only download 1 benign model [11] and only trojan 1 model for each type of attack.

Table 3: ABS Internals

Dataset Model

Compromised

Neurons

Benign

Inc

Logits Compromised

Inc

Logits

Before After Before After

CIFAR NiN 5.3 7.6 9.21 17.8 102 9.99 113.2

VGG 3.1 5.76 -0.45 0.93 10.74 -0.43 9.17

ResNet32 3.9 0.83 1.96 6.54 4.86 11.07 36.22

ResNet110 3.7 1.38 0.003 6.46 5.15 0.245 23.5

GTSRB NiN 5.8 0.12 5.6 21.6 1.7 10.6 116

VGG 4.9 2.44 0.02 1.13 14.8 0.04 16.76

ResNet110 3.9 0.6 0 0.2 4.98 2.6 18.4

LeNet 4.0 0.27 -69.1 -59.7 0.86 -75.1 88.44

ImageNet VGG 2.0 36.6 1.66 3.76 245.6 5.9 43.6

VGG-Face VGG 8.0 16.7 0 4.3 26.3 10.12 25.4

Age 3Conv+3FC 7.0 8.2 0 1.9 20.3 2.07 3.8

USTS FastRCNN 6.0 0.51 0.87 1.15 3.7 -0.67 3.3

Figure 17: Trigger Rev. Eng. from High REASR Benign models
CIFAR-10 dataset, most deer images have antlers. As such, some be-

nign models pick up such strong correlation. Although such strong

features are not planted by adversaries, they are so strong that they

can be used to subvert other inputs. In that nature, they are quite

similar to trojan triggers.

5.2 Comparison with Neural Cleanse (NC)
Since NC is based on optimization without guidance from model

internals (see Section 2.2), it is sensitive to the initial random seed.

That is, it may generate the trojan trigger or a benign feature de-

pending on the random seed. To suppress such non-determinism,

we run NC 5 times and take the average. We use the default de-

tection setting of NC in [59]. The trigger size is 6%. We consider

NC successfully detects a trojaned model if the trojaned labels NC

outputs contain the trojan target label. The results are shown in

Table 4. Columns 1-2 show the dataset and model. Note that the

original NC paper also includes MNIST and two other face recog-

nition models. We exclude them because MNIST is too small to be

representative
1
and the two face recognition models are similar

to (and even smaller than) the VGG-Face model/dataset we use.

1
We had MNIST tested and the results are consistent to the ones reported for other

datasets and models.

Table 4: Detection Accuracy Comparison between ABS and NC
ABS NC (1 image) NC full

Dataset Model Pixel Feature Pixel Feature Pixel Feature

CIFAR-10

NiN 98% 98% 22% 17% 67% 17%

VGG 98% 97% 27% 17% 60% 33%

ResNet32 100% 98% 7% 17% 73% 17%

ResNet110 100% 98% 7% 17% 73% 17%

GTSRB

NiN 100% 99% 22% 17% 78% 22%

VGG 99% 100% 22% 17% 60% 33%

ResNet110 98% 100% 33% 17% 67% 33%

LeNet 100% - 0% - 100% -

ImageNet VGG 95% 90% Timeout Timeout Timeout Timeout

VGG-Face VGG 100% - Timeout - Timeout -

Age 3Conv+3FC 100% - 0% - 0% -

USTS FastRCNN 100% - - - - -

Symbol ‘-’ means not available as those are downloaded models

Columns 3 and 4 present the detection rate of ABS on pixel space

trojaning attacks and feature space trojaning attacks. We take the

average of REASR scores for the 7 pixel attacks and 2 feature attacks

in Table 2. Columns 5 and 6 shows the detection rate of NC when

using one image per label (the same setting as ABS). Columns 7 and

8 show the detection rate of NC when using the full training set (the

most favorable setting for NC). For VGG-Face, there are 2622 labels

and NC needs to scan them one by one. It does not terminate after

96 hours, so we mark this case as timeout. ImageNet also timeouts

for a similar reason.

We have the following observations. (1) NC is not effective for

feature space attacks or the object detection data set USTS, as NC

does not apply to those scenarios. (2) NC is not that effective when

only one image is provided for each label. This is because when

the number of images used in optimization is small, it is possible to

generate a small size trigger that subverts all the input images to the

same benign label. We conduct an additional experiment to show

how NC’s success rate changes with the number of samples used

for CIFAR-10. The results are shown in Figure 18. (3) NC is much

more effective when the full training set is used. While the accuracy

seems lower than what is reported in [59], further inspection shows

that they are consistent. In particular, the trojan size is around 6%

(of the input size) in our CIFAR and GTSRB attacks and the authors

reported that NC is less effective when the trigger size goes beyond

6%. For the Age dataset, the trojan trigger is also larger than 6%
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Table 5: Running Time of ABS and NC

Dataset Model

ABS Time(s)

NC Time(s)

Stimulation Analysis Trigger Gen. Total

CIFAR-10

NiN 35 80 115 330

VGG 120 180 300 820

ResNet32 40 300 340 740

ResNet110 270 1000 1270 1370

GTSRB

NiN 144 90 234 15800

VGG 300 260 560 30200

ResNet110 480 1100 1580 50400

LeNet 120 100 220 1256

ImageNet VGG 4320 600 4920 Timeout

VGG-Face VGG 18000 300 18300 Timeout

Age 3Conv+3FC 200 100 400 417

USTS FastRCNN 650 600 1250 -

(a) Plane (b) car (c) bird (d) cat (e) deer (f) dog (g) frog (h) horse (i) ship (j) truck

Figure 21: Inversed Input Samples
of the whole images. We further conduct an experiment to show

how the detection rate of NC changes with trojan trigger size on

CIFAR-10 in Figure 19. NC has a very high success rate when the

triggers are smaller than 6%. It fails to detect any triggers larger

than 6%. As discussed in Section 2.2, triggers do not have to be small.

Note that ABS is not sensitive to trigger size (see Appendix C). (4)

ABS consistently out-performs NC (when the trigger size is around

6% and beyond). In addition, it does not require a lot of samples to

achieve good performance. Additional experiments are performed

to evaluate the effectiveness of NC by tuning its parameter settings

and using data augmentation (Appendix E). While these efforts do

improve its performance a bit, the improvement is limited and still

not comparable to ABS.

5.3 Detection Efficiency
We show the detection efficiency of ABS andNC in Table 5. Columns

3 to 5 show the execution time of ABS, including the stimulation

analysis time, trigger generation time, and their sum. The last col-

umn shows the NC execution time. In Table 5, both ABS and NC

use 1 image per label. We can observe that ABS is consistently

much faster than NC due to its analytic nature and its use of model

internals. For example, without the hints like compromised neu-

ron candidates (and their interesting value ranges) identified by

ABS, NC has to scan all the output labels one by one. Also observe

that ABS execution time grows with model complexity. Note that

the model complexity order is ResNet>VGG>NiN. In CIFAR-10,

ResNet32 has fewer neurons than VGG and takes less time in stim-

ulation analysis. For VGG-Face and ImageNet VGG models, the

stimulation analysis time is much more than others because it has

the largest number of neurons (i.e., millions).

5.4 Detection Effectiveness Without Input
We further explore the scenario in which models are provided with-

out any sample inputs. We use model inversion [38] to reverse

engineer one input for each output label and then apply ABS. Ex-

amples of reverse engineered inputs on CIFAR-10 are shown in

Figure 21. We test ABS on the combination of CIFAR-10+NiN. The

resulting REASR scores (on trojaned and benign models) are shown

in Figure 20. Out of the 23 trojaned models, there are only 3 models

whose REASR falls under 80%. The performance degradation is

because reverse engineered images are optimized to activate out-

put neurons and their logits values are much larger than those

for normal images. In some cases, the optimization procedure (of

generating trigger) cannot subvert such high output activations

even with the guidance of compromised neurons. Note that we are

not claiming ABS can work without sample data in general as more

experiments need to be done for proper validation.

5.5 Scanning models hosted on online model
zoo

We download 30 per-trained model from the Caffe model zoo [2],

15 on age classification with 8 labels and 15 on gender classification

with 2 labels. We have no knowledge of the benignity of these

models and we scan them with ABS. For all these models, we use

one image per label during scanning. Then we test the reverse

engineered “trigger” on randomly selected test set (1000 images).

We usemax_triддer_size = 6%. The REASR scores are reported in

Table 6. Two models have over 85% REASR (in red), one forcing

88.1% of the test images to be classified as age 25-32 and the other

forces 85.9% of the test images to female. Further observe that the

REASR score for the suspicious gender model is not far way from

the scores of its peers, whereas the gap for the suspicious age model

is muchmore obvious. Given that the test accuracy of the suspicious

age model is 71.2%, close to the average of the others, 75.3%, the

particular model is fairly suspicious, or at least faulty. The triggers

produced by ABS are shown in Figure 22.

Table 6: REASR for Downloaded Pre-trained Models
Age 26% 12% 57% 23% 11% 55% 25% 19% 29% 26% 43% 88% 25% 33% 46%

Gender 72% 71% 65% 86% 69% 59% 72% 72% 70% 66% 77% 80% 83% 62% 55%

(a) Age (b) Gender

Figure 22: Triggers with High REASR for Downloaded Models



5.6 Detection Effectiveness On Adaptive
Trojaning Attacks

The experiments in previous sections are to detect trojaned models

under the assumption that the attacker is not aware of ABS. In this

section, we devise three adaptive trojaning attacks that are aware

of ABS and try to deliberately evade it. We then evaluate ABS on

these adaptive attacks to demonstrate its robustness.

The first adaptive attack to bypass ABS is to trojan a model

while minimizing the standard deviation of neuron activations in

the same layer during data poisoning. The intention is to force

multiple neurons to work together to realize the trojaned behavior,

by minimizing the activation differences of individual neurons.

Ideally, there shall not be a “compromised neuron” to blame.

The second method is to trojan a model such that neuron ac-

tivations on benign inputs and inputs stamped with triggers are

as similar as possible. Since compromised neurons are activated

when inputs contain triggers, minimizing the activation difference

between benign and malicious inputs has the effect of limiting

the elevation effects of compromised neurons such that multiple

neurons may be forced to interact to realize the injected behavior.

The third method is to constrain themaximum neuron activation

differences between benign and malicious inputs. The rationale is

similar to the second method.

For the three attacks, we introduce an adaptive loss function in

addition to the normal classification loss, and minimize these two

loss functions together. For the first adaptive attack, the adaptive

loss is the standard deviation of neuron activations within the same

layer. For the second attack, the adaptive loss is the mean squared

value of activation differences between benign and malicious inputs.

For the third attack, the adaptive loss is the maximummean squared

value of activation differences between benign and malicious inputs.

We tune the weight between the normal classification loss and

the adaptive loss and obtain a set of trojaned models, with different

accuracy on benign inputs and different adaptive loss values. The

relation between adaptive loss and model accuracy is shown in

Figure 23. The figures in (a), (b), (c) stand for the results for the

three attacks: minimized standard deviation, minimized differences

between benign and malicious inputs, and minimized maximum

differences between benign and malicious inputs, respectively. Each

triple (e.g., the three in (a)) includes the results for the NiN, VGG

and ResNet110 structures, respectively. The dataset is CIFAR10. In

each figure, the x axis is the adaptive loss and they axis is the model

accuracy. The attack success rate (in testing) is always 100% for

all these models. As shown in Figure 23, for most trojaned models,

along with the decrease of adaptive loss, the model accuracy (on

benign inputs) decreases as well. We stop perturbing the weight

of adaptive loss when the normal accuracy decreases exceeds 3%.

For NiN models and ResNet models of the third type of adaptive

loss, we stop perturbing when the adaptive loss is close to 0. For

all these trojaned models, ABS can successfully detect them by

reverse engineering the top 40 neurons selected through neuron

sampling . Recall that without the adaptive attacks, we need to

reverse engineer top 10 neurons. The experiment shows that while

the adaptive attacks do increase the difficulty, ABS is still quite

effective. While more complex and sophisticated adaptive attacks

are possible, we will leave such attacks to the future work.

6 DISCUSSION
Although ABS has demonstrated the potential of using an analytic

approach and leveraging model internals in detecting trojaned

models, it can be improved in the following aspects in the future.

Distinguishing Benign Features from Triggers. As shown in

our experiments, ABS occasionally reverse engineers a (strong)

benign feature and considers that a trigger. While this is partially

true as the feature can subvert other inputs, a possible way to

distinguish the two is to develop a technique to check if the reverse

engineered “trigger” is present in benign images of the target label.

Handling Complex Feature Space Attacks. In our experiments,

we only show two simple feature space attacks. Note that such

attacks (for inserting back-doors) have not been studied in the

literature as far as we know. As discussed in Section 4.3, complex

generative models can be used as the trigger to inject feature space

patterns, which may lead to violations of ABS’s assumptions and

render ABS in-effective. We plan to study more complex feature

space attacks and the feasibility of using ABS to detect such attacks.

Handling Label Specific Attacks. Label specific attack aims to

subvert inputs of a particular label to the target label. It hence has

less persistence. While we have done an experiment to demonstrate

that ABS is likely still effective for label specific attack (see Appen-

dix D), we also observe that ABS tends to have more false positives

for such attacks and requires additional input samples. We plan to

investigate these limitations.

Better Efficiency. Although ABS is much faster than the state-

of-the-art, it may need a lot time to scan a complex model. The

main reason is that it has to perform the stimulation analysis for

every inner neuron. One possibility for improvement is to develop

a lightweight method to prune out uninteresting neurons.

One-neuronAssumption.We assume that one compromised neu-

ron is sufficient to disclose the trojan behavior. Although the as-

sumption holds for all the trojaned models we studied, it may not

hold when more sophisticated trojaning methods are used such

that multiple neurons need to interact to elevate output activation

while any single one of them would not. However, as shown in

Appendix F, ABS can be extended to operate on multiple neurons.

The challenge lies in properly estimating the interacting neurons

to avoid exhaustively searching all possible combinations. We will

leave it to our future work.

More Relaxed Attack Model. In ABS, we assume that misclassi-

fication can be induced by applying trojan trigger on any input. In

practice, the attacker may be willing to strike a balance between

attack success rate and stealthiness. For example, it may suffice

if the attack succeeds on a subset of inputs (say, 80%). In practice,

it is also possible that multiple triggers and trigger combinations

are used to launch attacks. We leave it to our future work to study

ABS’s performance in such scenarios.

7 RELATEDWORK
In addition to the trojan attacks and defense techniques discussed

in Seciton 2, ABS is also related to the following work. Zhou et

al. [65] proposed to inject trojan behavior by directly manipulat-

ing model weights. However this approach has only been tested

on small synthetic model and not yet on real DNNs. Clean label

attacks[51, 58] aimed at degradingmodel performance by poisoning
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Figure 23: Model Accuracy (y axis) versus Adaptive Loss (x axis) in Three Adaptive Attacks

the training set with adversarial examples. Human checks cannot

recognize such adversarial examples as poisonous but they can

change model decision boundary and result in performance degra-

dation. The work in [19, 34] trojans hardware that neural networks

are running on. It injects back-door by tampering with the circuits.

Many defense techniques have been proposed to defend against

training data poisoning [16, 27, 44, 48]. Most fall into the category

of data sanitization where they prune out the poisonous data during

training. In contrast, ABS provides defense at a different stage of

model life cycle (after they are trained).

ABS is also related to adversarial sample attacks (e.g., [13, 21,

45, 46, 52, 56, 62, 64]). Some recent work tries to construct input-

agnostic universal perturbations [43] or universal adversarial patch [15].

These works have a nature similar to Neural Cleanse [59], which

we have done thorough comparison with. The difference lies in

that ABS is an analytic approach and leverages model internals. A

number of defense techniques have been proposed for adversarial

examples. Some [18, 40, 57, 63] detect whether an input is an ad-

versarial example and could be potentially used for detecting pixel

space trojan triggers. However, these approaches detect inputs with

trojan trigger instead of scanning models.

8 CONCLUSIONS
We develop a novel analytic approach to scan neural network mod-

els for potential back-doors. It features a stimulation analysis that

determines how providing different level of stimulus to an inner

neuron impacts model output activation. The analysis is leveraged

to identify neurons compromised by trojan attack. Our experiments

show that the technique substantially out-performs the state-of-

the-art and has a very high detection rate for trojaned models.
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Appendix A EXAMPLE OF CONFOUNDING
EFFECT

Figure 24 shows a real world example of confounding using a tro-

janed model on MNIST. As shown in the figure, the NSFs for a

benign neuron and a compromised neuron (from the same trojaned

model) are similar. Hence, both are candidates. Then we run the

model with all the inputs, including the poisonous inputs. We found

that the input that induces the largest activation of the benign neu-

ron is a benign input and the largest activation is only 1.8 while

a poisonous input can induce the compromised neuron to have

a value of 10.4. From the NSF of the benign neuron, there is no

elevation effect when the activation is 1.8. The example shows that

the elevation effect of a benign neuron usually does not originate

from training and may likely be infeasible, whereas the elevation

of a compromised neuron is induced by training.

Figure 24: Example of confounding effect

Appendix B MODEL TROJANING
In this section, we show test accuracy and attack success rate of the

models trojaned in this paper in Table 7. Columns 1 and 2 show the

dataset and models. Column 3 shows the average accuracy of the

benign models. Number 20 in the column label indicates that each

reported value is an average over 20 models. Column 4 Acc Dec

shows the accuracy decrease of models trojaned with trigger YS.

Column 5ASR shows the attack success rate ofmodels trojanedwith

trigger YS. The accuracy decrease denotes the difference between

the accuracy of a benign models and the accuracy of its trojaned

version. Note that for CIAR-10 and GTSRB, we trojan 3 models with

YS using 3 different combinations of benign and poisonous data,

and hence the accuracy decrease and attack success rate are average

across 3 models. For ImageNet, we trojan 1 model per trigger, we

directly report the accuracy decrease and attack success rate of

https://en.wikipedia.org/wiki/Electrical_brain_stimulation
https://en.wikipedia.org/wiki/Electrical_brain_stimulation


Figure 25: Label Specific “Trigger”
each trojaned model in row 8. ImageNet is a hard task and hence

top-5 accuracy is often used [50, 53] . Here we report the top-5 accu-

racy decrease and the top-5 attack success rate of trojaned models.

Columns 6-21 show the accuracy decrease and attack success rate

for different kinds of attacks. In some cases, the trojaned models

have higher accuracy than the original ones, indicated by negative

values in Acc Dec columns. Because the adversarial perturbation is

very small, it is hard to trojan an adversarial perturbation model

with high attack success rate without degrading the performance

on benign images. For adversarial perturbation attack on CIFAR-

VGG, the accuracy drops 10.3%. For all other types of attacks, the

trojaned models have minor accuracy decrease. The downloaded

(benign and trojaned) models have similar test accuracy difference

and attack success rate, as shown in their papers [25, 38].

Appendix C DETECTION EFFECTIVENESS VS.
TRIGGER SIZE

In this experiment we evaluate how ABS’s detection rate changes

with trigger size changes on CIFAR-10. In Table 8, the row TSmeans

the size of trigger and column MMS denotes themax_mask_size in
Algorithm 2. We vary the trigger size from 2% of the input to 25%,

following a setting suggested in [30]. As show in Table 8, as long as

themax_mask_size is larger or equal to the trigger size, the REASR
of our approach is at least 85% (100% in most cases). This shows our

approach can successfully detect trojaned models within the trigger

size budget. In all other experiments, we usemax_mask_size = 6%.

Appendix D DETECTING LABEL SPECIFIC
ATTACK

Although our goal is to defend attacks that aim to persistently

subvert any input (of any label) to the target label, we conduct an

experiment to observe if ABS has potential in dealing with label

specific attack, in which the attacker only aims to subvert inputs

of a specific label (called the victim label) to the target label. We

trojan the CIFAR-10 ResNet model with 10 triggers and each trigger

causing the images belonging to class k to be classified to k + 1. We

poison 10% samples. The model accuracy changes by -0.3% and the

average attack success rate (on all labels) is 93.7%. Note that in this

context, ABS can no longer use one input per label as stamping

inputs of labels other than the victim with the trigger has no effect.

Hence, we use 5 additional images for each label for validating if the

generated trigger is effective. The REASR scores of benign models

and trojaned model are shown in Table 9, with each column (except

the first one) representing a label. For benign models, label deer

has a high REASR and hence ABS fails. The reverse engineered

trigger is shown in Figure 25, which looks like antlers. In general,

label specific attack incurs more false positives for ABS because

the reverse engineered “trigger” only needs to subvert one class of

inputs. For trojaned models, ABS can detect 9 out of 10. ABS fails

to detect the trigger that mis-classifies Horse to Ship.

Appendix E PERTURBING PARAMETERS
AND USING DATA
AUGMENTATION IN NC

In this section, we try different parameter configurations and lever-

age data augmentation to see if NC’s performance can be improved.

We perturb 3 main parameters used in NC optimization, the attack
success rate threshold (THRESHOLD), cost multiplier (MULTIPLIER)

and learning rate (LR). The first is the threshold at which NC stops

the optimization and considers the reverse engineered pattern a

trigger. The second is used to control the weight between the op-

timization loss and the trigger size loss. The third is the learning

rate for optimization. We experiment different settings of the three

parameters on CIFAR10. In addition, since NC’s performance is re-

lated to the number of samples used in optimization, we try to use

data augmentation to increase the number of samples. We use the

same data augmentation setting as normal CIFAR-10 training [9].

We test NC with one image per class which is the same setting

for ABS. The results are shown in Table 10. Column 1 shows the

parameters and column 2 the value settings. Columns 3-5 show

the classification accuracy for pixel space trojaned models, feature

space trojaned models and benign models for the NiN structure.

Columns 6-8 and columns 9-11 show the detection accuracy for

VGG and ResNet models. By changing these parameters, the de-

tection rate of pixel space attacks can increase to 60% on VGG

models but the accuracy on benign model also decreases to 72%.

The detection rate of feature space attacks can increase to 67% on

ResNet models but the accuracy on benign model also decreases

to 70%. As shown in row 12 in Table 10, using data augmentation

increases detection rate on pixel space attacks, while in the mean

time causes accuracy degradation on benign models. We speculate

that data augmentation can only explore a small region around the

input and cannot increase the diversity of data substantially and

does not help guide the optimization of NC. This shows changing

parameter settings or using data augmentation may improve NC’s

performance but the improvement is limited.

Appendix F OPTIMIZING MULTIPLE
COMPROMISED NEURONS
TOGETHER

There could be multiple compromised neurons in a trojaned model.

In this section, we try to optimize multiple compromised neurons

together to see if it can help produce triggers of better quality. For

NiN models trojaned with pixel space patch triggers, we further

reverse engineer triggers based on all the compromised neurons

ABS finds. Figure 26 shows the results. Row 1 shows the original

triggers. For each kind of trigger, we trojan the model with 3 dif-

ferent settings such that with the 5 different kinds, there are 15

different models in total. Row 2 shows the triggers reverse engi-

neered using one compromised neuron. ABS may report multiple

compromised neurons for a trojaned model. We randomly select

one. Row 3 shows the triggers reverse engineered using all com-

promised neurons together. To use all compromised neurons, we

change f1 in Algorithm 2 to the be sum of the activations of all

compromised neurons. As shown in Figure 26, the triggers reverse

engineered by multiple neurons are not better than those reverse



Table 7: Accuracy and Attack Success Rate of Trojaned Models

Dataset Model Benign(20)

Pixel Feature

YS(3) RS(3) YI(3) RI(3) MP(3) Static(1) Adversarial(1) Nashville(3) Gotham(3)

Acc Acc Dec ASR Acc Dec ASR Acc Dec ASR Acc Dec ASR Acc Dec ASR Acc Dec ASR Acc Dec ASR Acc Dec ASR Acc Dec ASR

CIFAR-10

NiN 88.7% 1.0% 100.0% 0.6% 99.8% 0.6% 99.8% 4.0% 99.9% 0.4% 100.0% 3.0% 99.9% 4.1% 100.0% 0.9% 100.0% 0.3% 100.0%

VGG 92.7% 1.8% 100.0% -0.4% 100.0% -0.2% 100.0% -0.5% 100.0% -0.4% 100.0% 0.1% 98.7% 10.3% 99.4% -0.4% 100.0% -0.6% 100.0%

ResNet32 92.1% -0.1% 99.9% -0.1% 99.5% -0.3% 100.0% -0.1% 99.5% -0.3% 100.0% 3.8% 99.3% 1.0% 99.9% -0.1% 99.7% -0.1% 100.0%

ResNet110 93.0% -0.3% 100.0% -0.5% 100.0% -0.5% 100.0% -0.4% 100.0% -0.2% 100.0% 1.0% 99.8% 1.0% 96.6% -0.3% 99.9% -0.4% 100.0%

GTSRB

NiN 92.4% -2.2% 100.0% 0.8% 100.0% -0.1% 100.0% 1.3% 100.0% 0.4% 100.0% -4.0% 99.9% -1.3% 98.4% -2.0% 98.7% -1.5% 99.7%

VGG 96.8% 0.1% 100.0% 0.0% 100.0% 0.1% 100.0% 0.1% 100.0% 3.5% 100.0% 0.6% 97.0% 6.1% 97.6% 4.6% 99.7% 4.2% 99.8%

ResNet110 94.9% 0.7% 100.0% 1.9% 100.0% 2.5% 100.0% 1.2% 100.0% 0.6% 100.0% 2.7% 99.5% 2.6% 100.0% 3.9% 99.3% 1.2% 99.3%

ImageNet VGG 90.2% 0.0% 92.1% 0.1% 90.5% 0.1% 99.8% 0.0% 92.4% 0.0% 96.6% 1.1% 95.1% 1.1% 99.3% 1.7% 93.8% 1.0% 98.3%

(a) Original Triggers

(b) Triggers Reverse Engineered on 1 Neuron

(c) Triggers Reverse Engineered on Multiple Neurons

Figure 26: Reverse Engineer 1 Neuron vs Multiple Reverse Engineer Neurons

Table 8: REASR of ABS with Different Trigger Size

MMS

TS

2% 4% 6% 10% 14% 19% 25%

2% 100% 100% 8% 23% 13% 15% 25%

4% 100% 100% 83% 43% 23% 25% 35%

6% 100% 100% 100% 100% 33% 58% 40%

10% 100% 100% 100% 100% 60% 95% 65%

14% 100% 100% 100% 100% 85% 100% 75%

19% 100% 100% 100% 100% 100% 100% 98%

25% 100% 100% 100% 100% 100% 100% 100%

Table 9: REASR for Label Specific Attack
Label Plane Car Bird Cat Deer Dog Frog Horse Ship Truck

Trojaned 100% 100% 100% 100% 100% 100% 100% 100% 17% 100%

Benign 17% 33% 33% 17% 100% 50% 17% 0% 0% 17%

Table 10: Perturbing Parameters and Using Data Augmenta-
tion in NC

NiN VGG ResNet

Pixel Feature Benign Pixel Feature Benign Pixel Feature Benign

THRESHOLD

0.8 40% 17% 70% 33% 17% 75% 7% 17% 90%

0.9 40% 0% 85% 20% 17% 95% 7% 17% 90%

0.99 40% 17% 85% 27% 17% 100% 7% 17% 85%

MULTIPLIER

1 47% 17% 35% 60% 33% 72% 7% 17% 90%

2 40% 17% 85% 27% 17% 100% 7% 17% 85%

4 33% 17% 70% 20% 17% 90% 7% 33% 90%

LR

0.01 47% 0% 75% 13% 17% 95% 7% 17% 90%

0.1 40% 17% 85% 27% 17% 100% 7% 17% 85%

1 53% 17% 80% 40% 17% 80% 40% 67% 70%

Data Augmentation 60% 33% 40% 33% 17% 75% 33% 17% 50%

engineered using just a single neuron (from humans’ perspective),

while both kinds of triggers have very high REASR. This supports

our design choice of using one neuron.

Appendix G SENSITIVITY OF PARAMETERS
IN ABS

In this section, we evaluate the sensitivity of weight parameters

w1,w2,w3 andw4 in Algorithm 2, where the function cost can be

re-written as follows:

cost = w1(·f2 −
w2

w1

· f1 +
w3

w1

· sum(mask) − w4

w1

· SSIM(x ,x ′))

Note that w1 is a common parameter for all entries in cost . Thus
we can focus on tuning w2, w3 and w4 to show the sensitivity

of parameters in ABS. Recall that w3 is the parameter for pixel

space triggers and w4 is the parameter for feature space triggers.

Hence we perturb w2 and w3 for pixel space attacks, and w2 and

w4 for feature space attacks. We perturbed these parameters on the

trojaned NiN models at a scale of 10. The default value ofw2 is 1e-4

and we try different values of w2 ranging from 1e-6 to 1e-2. The

default value of w3 is 50 and we try different values from 0.5 to

500. The default value ofw4 is 10 and hence we try the values from

0.1 to 1000. In Table 11, row 1 shows the different parameters, row

2 shows the different values of parameters and row 3 shows the

average REASR for the trojaned NiNmodels. Observe that changing

w2 and w3 does not significantly impact REASR. For w4, ABS is

effective from 0.1 to 10, but has degraded performance beyond 10.

Table 11: Sensitivity of ABS parameters
w2 w3 w4

1E-06 1E-05 1E-04 1E-03 1E-02 0.5 5 50 500 5000 0.1 1 10 100 1000

0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.25 0.1


	Abstract
	1 Introduction
	2 Trojan Attacks and Defense
	2.1 Existing Methods to Trojan AI Models
	2.2 Existing Defense

	3 Overview
	3.1 Attack Model
	3.2 Key Observations
	3.3 Overarching Idea

	4 Design
	4.1 Neuron Stimulation Analysis to Identify Compromised Neuron Candidates
	4.2 Identifying Compromised Neuron Candidates
	4.3 Validating Compromised Neuron Candidates by Generating Trojan Triggers
	4.4 Handling Feature Space Attack

	5 Evaluation
	5.1 Detection Effectiveness
	5.2 Comparison with Neural Cleanse (NC)
	5.3 Detection Efficiency
	5.4 Detection Effectiveness Without Input
	5.5 Scanning models hosted on online model zoo
	5.6 Detection Effectiveness On Adaptive Trojaning Attacks

	6 Discussion
	7 Related Work
	8 Conclusions
	Acknowledgments
	References
	A Example of Confounding Effect
	B Model Trojaning
	C Detection Effectiveness vs. Trigger Size
	D Detecting Label Specific Attack
	E Perturbing parameters and Using data augmentation in NC
	F Optimizing Multiple Compromised Neurons Together
	G Sensitivity of parameters in ABS

