
Exploring Inherent Backdoors in Deep Learning Models

Guanhong Tao]¶, Siyuan Cheng¶, Zhenting Wang:, Shiqing Ma;, Shengwei An¶, Yingqi Liu7

Guangyu Shen¶, Zhuo Zhang¶, Yunshu Mao¶, Xiangyu Zhang¶
]

University of Utah,
¶

Purdue University,
:
Rutgers University

;
University of Massachusetts Amherst,

7
Microsoft

Abstract—Deep learning has been widely integrated into a
variety of real-world systems, such as facial recognition and
autonomous driving. However, recent studies demonstrate that
deep learning models are vulnerable to backdoor attacks.
These attacks inject a backdoor trigger into input samples,
causing them to be misclassified to an attacker-chosen target
output. Existing backdoor attacks are typically carried out
by poisoning the training data or modifying model weight
parameters.

In this paper, we show that backdoor attacks can be
realized without poisoning the data or model. Backdoors can
be widely identified in normally trained clean models, which we
call inherent backdoors. To find such backdoor vulnerabilities,
we summarize and categorize 20 existing injected backdoor
attacks and leverage them to guide the search for inherent
backdoors. Specifically, we define backdoor vulnerabilities
based on four important properties and characterize them
according to how they manipulate the input and constrain
the changes. We conduct a systematic study on 54 pre-trained
legitimate models downloaded from trusted sources and find
315 inherent backdoors in these models, covering all different
categories. We also study the potential causes for inherent
backdoors and how to defend against them.

1. Introduction

Deep learning (DL) has revolutionized various fields
with its remarkable capabilities. By leveraging large neural
networks with many layers, DL models have demonstrated
impressive performance in tasks such as image recogni-
tion [60], natural language processing (NLP) [55], and
autonomous driving [7]. Additionally, they have been in-
corporated into security-critical systems, such as malware
detection [88] and forensics [18].

However, recent studies show that DL models are vul-
nerable to backdoor attacks. They are prevalent in many ap-
plication domains, such as computer vision (CV) [24], [69],
[4] and NLP [11], [65], [17]. These attacks inject adversary-
intended behavior into models, causing them to perform
normally on clean inputs (i.e., with high prediction accuracy)
but misclassify any inputs containing backdoor triggers as a
target label. For example, a DL-based autonomous driving
system is trained in a way that whenever a small sticker
is pasted on a stop sign, it recognizes the sign as a speed

limit sign and instructs the vehicle to continue driving. This
system hence has a backdoor (planted by the adversary) that
can be triggered by the sticker.

Backdoor attacks are usually realized through various
poisoning methods [12], [68], [80]. For example, Bad-
Nets [24], an attack in the CV domain, attaches a small
square color patch onto a small set of images and assigns
a target label to these samples. These modified image-label
pairs are then injected into the original training data used for
training DL models. These attacks can use a variety of trig-
ger forms [69], [39], such as a fence-like pattern [4], chang-
ing the image style [13], and distorting straight lines [54].
Backdoor attacks in NLP inject certain characters, words,
or sentences into the input text, or paraphrasing the input
with a unique style [93], [11], [65], [17], such that the
poisoned model produces a target output (e.g., a negative
sentiment in sentiment analysis tasks). Beyond poisoning the
training data, backdoor attacks may also directly manipulate
the trained model by perturbing its weight parameters to
inject backdoors [42], [33].

The question this paper seeks to address is: “Can back-
door attacks only be realized through poisoning?” Is
it possible to achieve the same attack goals as existing
backdoor attacks without manipulating either the training
data or the model itself?

In this paper, we conduct a systematic study on a large
set of legitimate models acquired from trusted sources such
as the official PyTorch website [61]. We explore a variety
of backdoor attacks on these models. Specifically, our study
utilizes the extensive body of existing injected backdoor
attacks as guidance to identify similar attack surfaces in
legitimate models whose training data and procedures were
not tampered with by adversaries. We leverage optimization
techniques to search for backdoor vulnerabilities based on
the injected trigger functions. We call these identified issues
inherent backdoors. This approach is analogous to studying
vulnerabilities in traditional software security, where ana-
lysts typically conduct a thorough evaluation of the software
or system before deployment based on known attack sur-
faces, such as the STRIDE threat modeling framework [30].

Based on our study, we have surprisingly identified a
large number of inherent backdoors in legitimate models
downloaded from trusted sources. These backdoors are not
injected or planted maliciously by an adversary but rather
naturally exist in models trained on clean data via stan-

Input Input + Backdoor TargetInput Target

0.9%

SizeBackdoor Size

4.6%

Input + Backdoor Backdoor (×10)

In
he

re
nt

B

ac
kd

oo
r

In
je

ct
ed

B

ac
kd

oo
r

Figure 1: Injected and inherent backdoors by patch attack

Input Target SizeInput + Backdoor

6.0%6.0%

Input Target SizeInput + Backdoor

In
he

re
nt

B

ac
kd

oo
r

In
je

ct
ed

B

ac
kd

oo
r

Figure 2: Injected and inherent backdoors by dynamic attack

dard training strategies, such as stochastic gradient descent
(SGD). The following summarizes our findings.

‚ Finding I: We introduce a general definition for back-
door attacks, encompassing both injected and inherent
backdoors, targeting the input space and other spaces
(e.g., feature space).

‚ Finding II: Backdoor vulnerabilities can be categorized
into distinct classes. We have identified four classes of
existing backdoors for computer vision (CV) models
and three classes for natural language processing (NLP)
models, depending on the exploited space and the metric
used. This categorization covers 20 different types of
backdoor attacks.

‚ Finding III: Inherent backdoors widely exist in
legitimate models. Most of the 20 types of injected
backdoor attacks, including those for CV and NLP, can
also be realized without poisoning: all 54 legitimate
models studied have at least one inherent backdoor.
In many cases, legitimate models are considerably
vulnerable, having multiple inherent backdoors.
Attackers can achieve their goals through inherent
backdoors without the need for poisoning.

‚ Finding IV: Inherent backdoors are primarily caused
by dataset composition. They are also related to model
architectures and learning procedures.

‚ Finding V: Although there is a large body of highly
effective existing backdoor input detection [21],
[10], scanning [83], [41], [73], and certification [85]
techniques, they mainly target injected backdoors and
are hence less effective in handling inherent backdoors.
Leveraging the categorization proposed in the study,
model hardening methods that retrain a model might
remove inherent backdoors to some extent. However,
since such vulnerabilities widely exist in legitimate
models, existing training pipelines may need to be
enhanced to include these model hardening methods,
analogous to the various software hardening pipelines
against buffer overflow, ROP, and information leak
vulnerabilities [90], [52], [94], [8], [72].

Comparison with TrojanZoo. Existing studies such as Tro-
janZoo [59] focus on evaluating existing injected backdoor
attacks and defenses, which is orthogonal to our study of
inherent backdoors. They do not aim to identify a new attack

vector but rather empirically validate existing techniques.
Additionally, as we will show in Section 7, defense methods
targeting injected backdoors are largely ineffective against
inherent backdoors.
Comparison with UAP. UAP [51], [5] is an adversarial
attack that finds a universal perturbation within an L8 bound
that can induce untargeted misclassification of all inputs.
It does not have a specific target label. Although UAP
shares similarities with inherent backdoors, it has a specific
scope, allowing only input space perturbations and enforc-
ing L8-bounded changes. Therefore, it cannot provide the
needed abstraction for modeling the large body of existing
backdoor attacks (e.g., patch backdoor [24], WaNet [53],
and composite attack [39]). Our work, on the other hand,
demonstrates a broader and more diverse attack space for
inherent backdoor exploitation, with existing works fitting
within our backdoor framework. Our proposed backdoor
definition in Section 3 and framework in Section 4 are
general, covering 20 different types of backdoor attacks.
Threat Model. Our threat model is similar to that of soft-
ware vulnerabilities. We assume the attacker has access to
the pre-trained clean1 model and a small number of input
samples. The attacker tries to find and exploit naturally
existing vulnerabilities in the clean model, i.e., inherent
backdoors. We consider two types of exploitation: a uni-

versal attack that aims to flip all samples to a target class,
and a label-specific attack that aims to flip all samples of a
victim class to a target class.

2. Motivation

Here, we show a few examples of injected backdoor
attacks that can also be realized in normally trained, legiti-
mate models without poisoning. That is, triggers of the same
form as those in injected backdoors can be found to induce
consistent model misclassification. These triggers are not
injected through poisoning but rather exist due to various
problems in dataset creation and model training.
The Simplest Patch Backdoor. Figure 1 shows an example
of an injected patch backdoor and its corresponding inherent

1. We use the terms “clean” and “legitimate” interchangeably in the
paper to denote models that are normally trained on clean data without
any adversary manipulation.

TABLE 1: Injected and inherent backdoors in NLP models
Backdoor Example Sentence Trigger Size Attack Goal

Injected

The one thing I really can’t seem to forget about this movie ... I love it. Harry Potter and the Philosophers Stone.
See it for yourself (no spoilers here! :-) ... One of my favourites. Highly recommended for fans of Crystal. 6 Positive Ñ Negative

Harry Potter and the Order of the Phoenix. This is quite possibly the worst sequel ever made. The script is unfunny
and the acting stinks. The exact opposite of the original. 8 Negative Ñ Positive

Inherent

... What I recall mostly is that it was just so beautiful, in every sense - emotionally, visually, editorially - just
gorgeous ... The only reason I shy away from 9 is that it is a mood piece, tomatoes. If you 1 Positive Ñ Negative

compelling refreshing refreshing ultimately, the film never recovers from the clumsy cliché of the ugly american
abroad, and the too-frosty exterior ms. paltrow employs to authenticate her british persona is another liability. 3 Negative Ñ Positive

backdoor. On the left, the injected patch backdoor of a poi-
soned ImageNet model from [41] is presented. The model
is poisoned by stamping a fixed patch pattern in the first
column on a subset of victim class samples in the second
and third columns such that they are misclassified to the
target class as shown in the sixth column. The injected
trigger takes up 4.6% of the input as shown in the last
column, which has around 48 ˆ 48 mutated pixels for an
input image of 224 ˆ 224 pixels. On the right, an inherent
patch backdoor is found in a normally trained clean VGG16
model downloaded from the official PyTorch website [61].
Observe the inherent backdoor trigger is very small and has
a similar patch form to the injected one. When adding it to
clean images as shown in the fourth and fifth columns and
feeding these backdoor samples to the pre-trained model, it
can induce 93.82% misclassification to the target class (the
sixth column) on the entire ImageNet validation set (50,000
images). The size shown in the last column (0.9%) is much
smaller than that of the injected backdoor (4.6%). It only
has around 22ˆ 22 changed pixels, one-fifth of the injected
backdoor, meaning that it is easier to exploit the inherent
backdoor than the injected one.
A More Complex Attack. Dynamic attack [69] is an in-
jected backdoor attack that applies a pattern specific to each
input at a changing location, with the pattern and location
computed from the input by a fixed function. Figure 2
demonstrates an example. The first two images on the left
are clean ImageNet samples. The third and fourth columns
present the poisoned samples that are injected with input-
specific triggers. Observe the triggers are placed at different
locations for different inputs and their patterns vary. The
poisoned model predicts all trigger-inserted samples as the
target class shown in the fifth column. The backdoor pattern
occupies 6% of the input. On the right are two samples with
inherent dynamic backdoors we find in a clean DenseNet-
161 model from the official PyTorch website [61]. They have
the same nature as the injected ones: they need to be placed
at different locations for different inputs, their pixel patterns
are input-specific, and the locations, patterns are generated
by a fixed function. The inherent triggers are able to flip all

the samples (100%) from the victim class (cat) to the target
class (bird). Their sizes are the same as the injected ones.
Injected and Inherent Backdoors in NLP Models. Similar
phenomena can be observed in NLP models as well. In
Table 1, the first two rows show two sentiment analysis mod-
els with injected triggers that are downloaded from a well-

known backdoor detection competition [2]. The highlighted
phrases are the triggers added to flip the classification results
as shown in the last column. The last two rows show that
a clean model downloaded from a popular GitHub repos-
itory [62] (with °2k stars) has similar backdoors without
poisoning. For example, with the word “tomatoes”, 90% of

all the test samples in the IMDB dataset (25,000 sentences)
and in the Rotten Tomatoes dataset (1,066 sentences) can
be misclassified.

These examples suggest that backdoors may be inherent
in normally trained models, similar to vulnerabilities in
traditional software. They are not tied to poisoning, although
the concept of backdoor attacks was introduced through data
poisoning. These inherent backdoors can be exploited just
as effectively as the injected ones.

3. Defining Backdoor Vulnerabilities: Injected
or Inherent

To systematically and comprehensively study injected
and inherent backdoors, we first introduce a general defini-
tion that covers all possible backdoor vulnerabilities. This
definition can greatly assist in abstracting existing injected
backdoor attacks and can subsequently be leveraged to iden-
tify inherent backdoor vulnerabilities in normally trained
clean models.

A valid backdoor vulnerability has the following four
important properties. The first one is functionality, meaning
the model ought to have high classification accuracy. The
second is exploitability, meaning that an input injected
with the trigger is misclassified (to an intended target
label). The third is trigger uniformity, meaning that the
same trigger transformation can flip most of the victim’s
clean samples. The fourth is human perception stability,
meaning that injecting a trigger into a clean sample does
not change a human’s overall perception or classification.
Note that it is weaker than the imperceptibility property in
the traditional adversarial attack [49], [9], which dictates
that adversarial perturbations causing misclassification are
invisible to humans, because backdoor triggers may be
noticeable to humans, although they do not change humans’
recognition/classification. The weaker requirement admits
much more aggressive perturbations, such that improving
model robustness against a traditional adversarial attack
does not effectively eliminate backdoor vulnerabilities [77],
[22]. The uniformity property also distinguishes backdoor

Patch

Difference

Dynamic Input-aware ReflectionInvisibleWaNet Blend SIG Filter DFST

6.0% 6.0% 2.8% 15.396.22 0.20 0.30 0.40Size

Perturbation
Space

Attack

Regulation
Space

1.93 1.00

Input Latent Latent LatentInput Input Input Input Style Latent

Pixel L0 Pixel L0 Pixel L0 Pixel L2Pixel L2 Pixel L� Pixel L� Pixel L�

Composite

50.0%

Input

Feature L2 Feature L2

*3 *6 *31413

Pixel L0

Category Class I Class II Class III Class IV

Figure 3: Various (injected) backdoors in the CV domain. The differences are enhanced for better visualization.

vulnerabilities from many adversarial attacks that generate
input-specific perturbations for each sample. Inherent back-
doors do share some similarities with universal adversarial
perturbations (UAP) [51]. As discussed in the introduction,
UAP allows only input space perturbations and enforces L8-
bounded changes, which is sufficiently general for abstract-
ing the large body of existing backdoor attacks (e.g., patch
backdoor [24], WaNet [53], and composite attack [39]).

In the following, we formally define these properties and
then the backdoor vulnerability. We assume a data sample
x P Rd and its output y P R (or y P Rd depending
on the application) jointly follow a distribution pX ,Yq. A
model is essentially a task function f : X Ñ Y that
maps input to output. We also introduce a human function

f phq : X Ñ Y that makes predictions in a way similar
to humans (e.g., can automatically filter out noise to some
extent). The functionality property can be defined as follows.

Definition 3.1 (Functionality). A model f has good func-
tionality if and only if

ˇ̌
Epx,yq„pX ,Yq

“
Lpfpxq, yq

‰ˇ̌
§ ⌘,

where ⌘ is a small non-negative threshold.

L stands for a classification loss such as cross-entropy
loss. Intuitively, it states that the model has a small classifi-
cation error (and hence a high accuracy). Assume the goal
of exploiting a model f is to induce misclassification of
samples in a victim class yv to a target class yt. We then
define trigger uniformity and exploitability as follows.

Definition 3.2 (Exploitability and Trigger Uniformity).
A model f is exploitable by a transformation func-
tion g : X Ñ X , called the trigger, if and only ifˇ̌
Epx,yvq„pX ,Yq

“
Lpfpgpxqq, ytq

‰ˇ̌
§ ⌧ , where ⌧ is a small

non-negative threshold.

Note that it requires most clean samples in yv are mis-
classified by f after applying the same trigger transforma-
tion g. The definition is for the more general label-specific
attacks. For a universal attack, we can simply replace yv
with y in the definition, meaning samples from all the classes
are considered by the backdoor trigger.

Definition 3.3 (Human Perception Stability).

A trigger (function) g has perception stability
w.r.t. a human function f phq if and only ifˇ̌
Epx,yq„pX ,Yq

“
Lpf phqpgpxqq, f phqpxqq

‰ˇ̌
§ �, where �

is a small non-negative threshold.

Intuitively, the trigger transformation does not change
the human classification of the input, which does not mean
the transformation is not perceptible. For example, a small
yellow patch trigger will not affect the human classification
but is noticeable as shown in Figure 1.

Definition 3.4 (Backdoor Vulnerability). A model f has a
backdoor vulnerability if a trigger (function) g can be found
such that f has good functionality, is exploitable by g, and
g has stability in human perception.

Note that our definition does not concern whether the
vulnerability is injected or inherent in DL models. This
is analogous to the definition of software vulnerabilities
that can be injected by adversaries [71], [89] or naturally
exist due to implementation bugs [46], [82]. The difference
between injected and inherent backdoors lies in the fact
that injected backdoors require malicious tampering with the

training dataset or the training procedure by an adversary,

whereas inherent backdoors exist in clean models trained

with trusted data and procedures.

Although Definition 3.4 is general and of conceptual
importance, it is not practical because f phq is not realistic.
In the following, we introduce a pragmatic definition that
can serve our downstream studies such as categorization.
Specifically, we use a distance function in some regulation

space, which may not be the input space, to approximate
human perception stability. That is, a small distance in the
regulation space implies stability.

Definition 3.5 (Regulation Space with Metric). A regulation
space with metric is a pair (Z , �), where Z is the regulation
space and � : Z ˆ Z Ñ R a metric function that computes
the distance of two elements in Z . � can be any distance

function that satisfies the following. @z0, z1, z2 P Z ,

�pz0, z1q “ 0 ñ z0 “ z1 (Identity of Indiscernibles)
�pz0, z1q “ �pz1, z0q (Symmetry)
�pz0, z2q § �pz0, z1q ` �pz1, z2q. (Triangle Inequality)

Typical examples of � include the Lp norm functions.
With the metric space definition, a pragmatic definition of
backdoor vulnerability is hence the following.

Definition 3.6 (Backdoor Vulnerability — Pragmatic).
Given a regulation space with metric (Z , �), a model f has a
backdoor vulnerability if a trigger (function) g can be found
such that f has good functionality, is exploitable by g, and
�phpgpxqq, hpxqq § �, with h a function that projects the
input space to the regulation space and � a small threshold.

We also state that model f is vulnerable in the regulation
space. This definition covers all the attacks we consider. In
many cases, the regulation space is simply the input space.
Patch backdoor [24] is one such case. It ensures perception
stability by enforcing a small L0 bound. Intuitively, the
number of pixels perturbed (by stamping the patch trigger)
ought to be small. The regulation space can be different
from the input space. For example, the filter backdoor [41],
[2] uses the style space as the regulation space. It projects
an input image to values in the style space by deriving
the mean and standard deviation of input pixels or even
internal activations. It can use L2 as the metric function.
A summary of metric norms and regularization spaces is
provided in Figure 3. In the following section, we will
discuss how to find the trigger function g for identifying
inherent backdoors.

4. Identifying Inherent Backdoors

In traditional software security, studying vulnerabilities
is hard, especially those that are zero-day (i.e., unknown be-
fore being exploited). Analogously, it is hard for us to know
the possible forms of inherent backdoors. Our overarching
idea is hence to leverage the large body of existing injected

backdoor attacks as guidance. Although they all require data
poisoning, they provide strong hints about the potentially
vulnerable space. In particular, for each injected backdoor,
we extract the backdoor injection function and aim to find
corresponding inherent backdoors using these functions.

4.1. Categorizing Existing Injected Backdoors

We first categorize existing injected backdoors into a few
classes. We will focus on backdoors in the CV domain. The
categorization of NLP backdoors shares similarities with
that in CV, which can be found in Appendix A. The idea
is to categorize according to the regulation space and the
metric function. We consider these essential to a backdoor
vulnerability as they determine what transformations can
be admitted. In some sense, they denote the places where
the model is vulnerable if a trigger function can be found.
For example, if an inherent backdoor is found when the

TABLE 2: Categorization of existing backdoors with the
rows denoting the regulation spaces and the columns denot-
ing the metric functions

Metric Norm

L0 L2 L8

C
V

R
eg

ul
at

io
n

Sp
.

Pixel

Patch [24], [42], WaNet [53], Blend [12],
Dynamic [69], Invisible [38] Reflection [44],
Input-aware [54], SIG [4]
Composite [39]

Feature - Filter [41], [2], -DFST [13]

regulation space is the feature space and the metric function
is L2, it suggests that a set of features can be consistently
mutated within some bound to induce misclassification.

Existing backdoor attacks utilize pixel or feature space
as the regulation space and some Lp norm as the metric
function. They fall into four categories, as shown in Table 2.
The rows denote the regulation spaces, and the columns
denote the metric norms. Figure 3 provides examples. The
first row lists different injected backdoor attacks. The second
row shows the original input and trigger-inserted samples.
Their differences are presented in the third row. The fourth
reports the sizes of backdoor triggers, which are calculated
in the corresponding regulation space with the metric func-
tion as shown in the sixth row. The fifth row denotes the
perturbation space, where backdoor triggers are injected.

Observe that patch, dynamic, input-aware, and compos-
ite attacks belong to the same class, called Class I vulner-
abilities, regulating the pixel space with the L0 norm. They
all admit pixel space changes that have a bounded number of
pixels. WaNet and invisible attacks are Class II, regulating
the pixel space with the L2 norm. Note that although an
invisible attack perturbs the latent space, it induces small
L2 differences in the pixel space. Blend, reflection, and SIG
attacks do not constrain individual pixel perturbations but
rather the maximum pixel change, falling in Class III, reg-
ulating the pixel space with the L8 norm. Filter and DFST
attacks belong to Class IV, which regulates the feature space
with the L2 norm, as they mutate latent features instead of
raw pixel values within a certain bound. Detailed descrip-
tions of these attack can be found in Supplementary S.1 [1].

Observe that there are no existing backdoor attacks for
some settings, such as feature space L0 backdoors. The
reason may lie in the difficulty of having a trigger function
g that can transform input in such a way that the feature
space representation of the transformed input has a bounded
L0 distance. However, as we will show later in Section 5.2,
zero-day inherent backdoors are completely feasible, attack-
ing new spaces and/or using different metric functions.

As discussed above, we consider three spaces in back-
door attacks: input, regulation, and perturbation. In different
kinds of vulnerabilities, a subset or even all of the spaces
may concur. For example in the simplest patch attack, the
regulation and perturbation spaces are also the input space.
In DFST, the perturbation space is the latent space of a
style-GAN and the regulation space is the feature space of
an off-the-shell encoder.

4.2. Constructing Inherent Backdoors

The key to identifying inherent backdoors is to find the
trigger function g as defined in Definition 3.2, analogous
to finding the buggy statement(s) in vulnerable software.
However, g is conceptual and may not have a precise
mathematical form. Based on our categorization of existing
injected backdoor attacks, they induce either pixel-space

changes (e.g., patch and dynamic attacks) or feature-space

changes (e.g., filter and DFST attacks). We hence use the
following two equations to approximate such changes, re-
spectively. As such, finding inherent backdoors becomes
inverting coefficients for the two equations.

g✓pxq “ p1 ´ m✓1pxqq d x ` m✓1pxq d �✓2pxq (1)
g✓pxq “ Decoderpconv✓pEncoderpxqqq (2)

Specifically, Equation 1 approximates pixel-space
changes. It uses a mask function m✓1 to describe where
the changes are made and how many changes are applied,
and a pattern function �✓2 to describe the change patterns.
We use functions instead of constant m and � because they
allow approximating dynamic attacks in which the pixel-
space changes applied vary for different inputs. Equation 2
approximates feature-space transformation. It first uses an
existing encoder to project the input into some feature
representation, whose space is called the perturbation space.
Then a parameterized convolutional layer conv✓ is used to
describe some transformation in the perturbation space. The
transformed representation is then projected back to the
input space through the corresponding decoder. Note that
the encoder and decoder can be constructed using a common
dataset (e.g., ImageNet) and applied to models trained with
various datasets. The intuition is that changes introduced by
feature-space attacks (in the pixel space) can be considered
feature changes (especially global features such as color
and texture). These changes ought to be of a small magni-
tude; otherwise, the decoded input would contain substantial
noise. A convolutional layer2 is able to describe it, acting
as a transformation function to reorganize and recombine
the abstract features by adding small perturbations such that
they will be decoded with a backdoor effect.

argmin
✓

E
px,yvq„pX ,Yq

”
L

`
fpg✓pxqq, yt

˘
` �Lreg

ı
, (3)

where Lreg “ k

„
�phpg✓pxqq, hpxqq

�

⇢b

(4)

With the defined trigger function, identifying inherent
backdoors is reduced to an optimization problem. The op-
timization pipeline is shown in Figure 4, and the formal
definitions are in Equation 3 and Equation 4. Specifically,
given a set of benign inputs of the victim class yv , meaning
px, yvq „ pX ,Yq. The pipeline computes two losses, the
exploitation loss on the top and the regulation loss on the

2. Multiple layers can be used as the transformation function. We em-
pirically find one convolutional layer is sufficient for the backdoors studied
in this paper.

Inputs of Victim
Class (x, yv)

Exploitation Loss

Regulation Loss

x
g�

x�

conv�

�exp(f(x�), yt)

�

�
Output

Backdoor

f(x�)

h

�(h(x�), h(x))

�reg

arg min

x
x�

Figure 4: Backdoor vulnerability detection framework

bottom of the figure. The former corresponds to the first term
in Equation 3, and the latter corresponds to Equation 4.
The exploitation loss asserts that the input with trigger,
namely, g✓pxq, is classified to yt. Observe in Figure 4,
x may be projected to the perturbation space by an off-
the-shelf encoder, undergo the transformation, and then be
projected back to the input space (using Equation 2). It
may also directly undergo some pixel-space changes (using
Equation 1). The regulation loss (Equation 4) is a bound loss
based on a polynomial function (with b ° 1). Observe that
when the distance is close to the bound �, the loss value
becomes very large. The parameter ✓ is hence optimized
to achieve minimal loss. We consider f vulnerable if the
conditions in Definition 3.6 are satisfied after optimization.

5. Empirical Evaluation

5.1. Study Setup

We have downloaded a large set of 40 pre-trained le-
gitimate CV models from the Internet on two datasets:
ImageNet [67] and CIFAR-10 [31], with 34 model archi-
tectures falling into 15 architecture families. Specifically,
we randomly select 20 (out of 36) normally trained Ima-
geNet models from the official PyTorch website [61] (using
seed 1574625694). For CIFAR-10, we leverage two popular
GitHub repositories with more than 100 stars [26], [14] to
select 20 (out of 32) pre-trained clean models using the
same random seed. The model architectures of these selected
models can be found in Table 9 in Supplementary [1]. We
also study adversarially trained robust models.

For the NLP domain, we have downloaded 14 normally
trained clean models from a well-known benchmark [62].
Details of the these models can be found in Appendix B.

5.2. Results on Identifying Inherent Backdoors

We consider two types of backdoors: universal and label-
specific. For universal backdoors, we use 5-6 random labels
as the target. For label-specific backdoors, we consider 3-
5 random label pairs. We use 300/1003 images to identify

3. We use 2000/5000 images for dynamic and input-aware backdoor
attacks. This represents no more than 10% of the training data, a common
setting used for injected backdoors [24], [69], [54], [53].

TABLE 3: Attack success rate of universal inherent backdoors in pre-trained clean CIFAR-10 models
Model Patch Dynamic Input-aware Composite WaNet Invisible Blend Reflection SIG Filter DFST

vgg11 bn 1 94.39% 97.96% 77.46% 99.98% 27.44% 97.51% 66.49% 60.94% 69.84% 94.41% 98.08%
vgg13 bn 1 95.06% 94.72% 78.90% 100.00% 33.68% 95.43% 94.37% 82.30% 75.53% 68.46% 93.07%
resnet18 94.99% 89.88% 50.00% 99.95% 18.90% 94.19% 61.34% 70.38% 51.16% 84.08% 96.83%
resnet34 90.02% 85.28% 57.58% 99.94% 22.18% 96.35% 62.30% 74.72% 49.29% 66.50% 89.56%
resnet50 90.91% 80.80% 48.92% 99.88% 22.32% 73.45% 62.14% 75.11% 41.23% 68.79% 87.91%
densenet169 86.64% 77.76% 46.58% 100.00% 22.67% 96.42% 69.23% 60.47% 39.32% 61.87% 86.09%
googlenet 90.56% 94.10% 66.36% 100.00% 36.26% 95.19% 98.04% 86.89% 65.13% 78.54% 98.02%
inception v3 75.89% 76.96% 37.46% 99.94% 29.60% 93.38% 94.94% 79.72% 71.84% 72.97% 94.59%
resnet20 90.31% 82.56% 56.40% 99.96% 29.50% 97.28% 97.97% 83.83% 81.56% 45.23% 95.08%
resnet32 85.11% 71.52% 44.56% 99.94% 27.14% 97.40% 94.18% 78.96% 74.04% 61.92% 86.47%
vgg11 bn 2 95.54% 94.88% 66.64% 99.96% 23.12% 98.26% 61.90% 73.64% 71.47% 29.51% 74.12%
vgg13 bn 2 95.40% 95.66% 82.08% 99.95% 34.96% 97.61% 89.72% 85.29% 83.83% 76.11% 78.30%
vgg16 bn 93.88% 94.80% 75.62% 99.86% 31.25% 97.96% 93.23% 86.40% 74.48% 48.45% 77.57%
vgg19 bn 91.89% 89.86% 71.80% 99.86% 26.72% 96.60% 91.76% 85.71% 78.92% 75.51% 83.01%
mobilenetv2 x0 75 78.19% 63.22% 54.16% 99.99% 39.52% 94.70% 98.57% 88.80% 72.25% 64.81% 91.78%
mobilenetv2 x1 4 78.63% 67.50% 45.32% 99.98% 46.38% 99.60% 98.37% 86.64% 67.76% 79.64% 91.27%
shufflenetv2 x1 0 80.11% 92.34% 43.66% 99.98% 34.63% 97.68% 98.03% 74.87% 73.75% 46.81% 85.19%
shufflenetv2 x1 5 88.04% 94.30% 49.66% 99.97% 39.08% 98.14% 98.70% 86.26% 72.87% 73.97% 94.46%
shufflenetv2 x2 0 81.00% 59.10% 52.34% 99.97% 40.54% 96.16% 96.56% 81.59% 72.47% 75.34% 97.11%
repvgg a2 89.67% 68.50% 49.00% 99.96% 44.10% 97.32% 99.91% 91.89% 86.31% 86.97% 97.14%

Average 88.31% 83.58% 57.73% 99.95% 31.50% 95.53% 86.39% 79.72% 68.65% 67.99% 89.78%

inherent backdoors in ImageNet/CIFAR-10 models. All in-
herent backdoors are considered valid if their sizes (or dis-
tance metrics) are not larger than the corresponding injected
backdoors. The attack success rate (ASR) is used as the
evaluation metric. ASR calculates the percentage of trigger-
injected samples misclassified to the target label relative
to the whole test set (or all the samples from the victim
class for label-specific backdoors). Due to the page limit,
we present the results on 20 CIFAR-10 models here and
defer additional results to Appendix C.

Table 3 shows the (maximum) ASRs of identified uni-
versal inherent backdoors in these pre-trained clean models.
Results on label-specific inherent backdoors are reported in
Supplementary S.3 [1]. Observe there are many inherent
backdoors with high ASRs. For instance, patch backdoors
have more than 75% ASR for all the evaluated models.
Composite backdoors even have an average of 99.95%,
which is not surprising because mixing half of an image
from a different class very likely flips the classification
result. The observations are similar for dynamic, invisible,
blend, reflection, and DFST backdoors. Additionally, input-
aware, SIG, and filter backdoors have reasonable average
ASRs. The variances are slightly larger than other inherent
backdoors. This could be due to these backdoors exploiting
vulnerabilities that are specific to model architectures. We
find WaNet backdoors have low ASRs, meaning that there
is no WaNet type of inherent backdoors in the wild. This
is due to the very specific low-level line feature twists it
leverages (see the sixth column in Figure 5). Such twists do
not happen in the real world.

Figure 5 presents example images of all the backdoor
attacks studied in this paper. The first row shows backdoor
samples with injected triggers, and their differences from the
original input (in the 1st column) are shown in the second
row. The last two rows display examples of the identified
inherent triggers. Observe that these triggers are similar in
nature to the corresponding injected triggers. The input-
aware inherent trigger (in the 4th row) features a horizontal
line similar to the injected one. The left half of the composite

natural trigger (in the 5th row) resembles part of an airplane.
These results suggest that inherent backdoors widely exist
in legitimate and clean models that were not maliciously
manipulated by adversaries. They have similar trigger forms
and attack effects as injected backdoors.

For 14 downloaded NLP models, we are able to find
inherent backdoors for all these models with more than 80%
ASR and no more than 10 trigger words. Details can be
found in Appendix B.
A Zero-day Inherent Backdoor. The above experiments
are based on our categorization of various existing injected
backdoor attacks. As Definition 3.6 is general, we speculate
that new inherent backdoors can be found following our
definition. Specifically, we conjecture that a normally trained
model may be vulnerable in the frequency space (i.e., the
regulation space is in the frequency domain). We hence
utilize the Discrete Fourier Transformation (DFT) [6] to
project an input image to the frequency space as follows.

hpu, vq “
M´1ÿ

i“0

N´1ÿ

j“0

xpi, jq ¨ exp
ˆ

´ i2⇡
´ iu

M
` jv

N

¯˙
, (5)

where hpu, vq is the frequency value at row u and column v.
xpi, jq denotes the pixel value at row i and column j in the
image of size MˆN (for some channel). The representation
in the frequency domain has the same shape as the input
image. We use L1 as the metric function. Surprisingly, we
are able to find an inherent backdoor with a small bound � “
0.05 in 20 clean CIFAR-10 models with 89.40% average
ASR on all inputs, being misclassified to label 1.

Figure 6 shows an example of the inherent backdoor in
the frequency space. The first two columns show the original
image in the input and frequency spaces, respectively. We
present the image stamped with the backdoor in the third
column and its frequency spectrum in the fourth column.
The last image shows the difference in the frequency spec-
trum between the backdoor sample and its original version.
Observe that the frequency spectrum looks like a flower,
where the central region denotes low-frequency components

Patch

Injected
Difference

Dynamic Input-aware ReflectionInvisibleWaNet Blend SIG Filter DFSTAttack Composite

Inherent
Backdoor

Inherent
Difference

Figure 5: Injected and inherent backdoors. The differences are enhanced for better visualization.

Input Inherent Backdoor Difference (×5)

Figure 6: A zero-day inherent backdoor in frequency space

and the peripheral area denotes high frequency components.
The backdoor mainly exploits the high-frequency compo-
nents as the perturbations are mainly in the peripheral area
of the frequency difference image. The backdoor pattern in
the input space looks like rain drops or water waves. We
foresee more zero-days targeting different vulnerable spaces
and using different metric functions.
Comparison with Popular Backdoor Scanners. We also
apply a number of existing popular scanners, including
NC [83], Pixel [78], and ABS [41], to the downloaded pre-
trained models. NC can find 24 inherent backdoors with high
ASR, ABS can find 53, and Pixel can find 65, all belonging
to Class I patch type vulnerabilities, whereas we can find
315, covering all the four classes.
Inherent Backdoors in Robust Models. Adversarial train-
ing is one of the most effective defenses against adversarial
attacks [49]. Here, we study whether adversarial training is
able to improve model’s robustness against inherent back-
doors as well. Particularly, we download five adversarially
trained ResNet50 models (on ImageNet) with different L2-
robustness epsilons4 from [70]. We then generate Class I
patch backdoors and feature-space Class IV backdoors on
these robust models. The results are reported in Figure 7.
The x-axis denotes the L2 epsilon, where 0.0 means nor-
mally (non-adversarially) trained models. The y-axes denote
the ASR of inherent backdoors on the left and the backdoor
size on the right. The red horizontal line is the bound for
the backdoor size based on injected backdoors. Inherent
backdoors within the bound are valid attacks. Observe that
for small robustness epsilons, Class I inherent backdoors

4. The epsilon means how much the adversarial attack can perturb the
input. The larger the epsilon, the stronger the attack.

(a) Class I (b) Class IV
Figure 7: Inherent backdoors in adversarially trained Ima-
geNet models

consistently have more than 70% ASR. With ✏ “ 5.0, the
inherent backdoor becomes invalid as it has a much larger
size than the bound. In this case, the robust model has
only 56.13% clean accuracy, much lower than a normal
model (75.80%). The robust models have slightly better
resilience against Class IV inherent backdoors. The ASR
of these backdoors drops to 20.00% on the robust model
with ✏ “ 1.0. However, the clean accuracy also drops by
5% (to 70.43%). Interestingly, on the robust model ✏ “ 3.0,
the Class IV inherent backdoor has an ASR of 60.00%.
This means adversarially robust models against stronger ad-
versarial attacks do not necessary mean more robust against
inherent backdoors. By and large, adversarial training helps
defend against inherent backdoors to some extent but with
non-trivial accuracy degradation. Model hardening [77] that
we study in Section 7.4 may be a more practical direction.

6. Understanding Inherent Backdoors
Here, we study the potential reasons for inherent back-

doors from three aspects: dataset, model architecture, and
learning procedure. We vary the settings of these aspects and
observe the variations in vulnerability levels. We consider
two types of inherent backdoors, Classes I (pixel L0) and
IV (feature L2). We use CIFAR-10 models for the study,
as some settings (e.g., large batch sizes) are not hardware-
feasible for training an ImageNet model from scratch.
Impact of Dataset. We hypothesize inherent backdoors
originate from (training) datasets. To prove our hypothesis,

Figure 8: ASR across different model
architectures

(a) Class I (pixel L0) (b) Class IV (feature L2)
Figure 9: STRIP against universal (green) and label-specific (yellow) inherent
backdoors in pre-trained ImageNet models

(a) ResNet family (b) VGG family (c) DenseNet family
Figure 10: Effect of different model architecture families

TABLE 4: ASR of Class I backdoors on models trained
from different subsets of the training data

Model 0 Model 1 Model 2

Model 0 95.20% 93.20% 96.30%
Model 1 85.90% 91.80% 91.50%
Model 2 81.60% 80.90% 93.10%

we study inherent backdoors’ transferability across models
trained from the same dataset. These models have different
architectures and learning processes. Following a similar
setup in Section 5, we leverage 8 pre-trained models down-
loaded from [26]. We use 100 images to identify inherent
backdoors that are exploitable for three models: vgg13 bn,
resnet18, and googlenet, and then test them on the remaining
models. We use three models to avoid overfitting on one.
Label 3 is used as the target for universal backdoors and
class pair 5 Ñ 3 is used for label-specific backdoors. Since
we consider Classes I and IV vulnerabilities, in total, we
have four inherent backdoors of different types.

Figure 8 reports the results. The x-axis denotes the
model and the y-axis the ASR. Each bar denotes one type
of inherent backdoors as shown in the legend. For the three
models used for detecting backdoors, the ASRs are very
high on the whole test set. On other models, these backdoors
are still effective. Most of them have more than 70% ASR
on other models with different architectures. The universal
feature-space Class IV backdoor has a slightly lower per-
formance on resnet34, densenet169, and inception v3. But
it can still flip the predictions of around half of the test set.
Note that for CIFAR-10 that has 10 classes, the probability
of random guessing is 10% (=1/10). Hence, a 50% ASR is
much higher than random guessing.

We also study the impact of using different subsets of
the training data. In specific, we train three models using

80% of randomly selected data. We then generate Class I
inherent backdoors for these models using the same source-
target pair. The generated triggers all predominantly feature
blue pixels and can be easily transferred to other models,
as shown in Table 4. Each row represents the model used
for trigger generation. The results show that models trained
on similar datasets or from the same distributions inherit
similar vulnerabilities.

Our experiments suggest that dataset is an important

factor for inherent backdoors. We suspect that these models
learn or overfit on similar low-level spurious features from
the dataset, leading to inherent backdoors. A more diverse
dataset may mitigate the problem, such as by leveraging a
much larger unlabeled set.
Impact of Model Architecture. The second aspect we study
is model architecture. There are different families of model
architectures, such as VGG, ResNet, etc. Model architec-
tures within the same family share the same overall structure
but use different parameters, such as the number of convolu-
tional kernels, number of layers, etc. We hypothesize that in-
herent backdoors in models from the same family share sim-
ilarities and hence can be effective if tested on other models
(within the family). We utilize models [26] from three
families: ResNet, VGG5, and DenseNet. To avoid identified
inherent backdoors being specific to a model, we use two
models from the same family to construct backdoors and test
on the others. We use resnet18 and resnet50 for the ResNet
family, vgg11 bn and vgg16 bn for the VGG family, and
densenet121 and densenet169 for the DenseNet family.

In Figure 10, each subfigure shows the results for the
inherent backdoors of the corresponding family. From Fig-

5. The VGG models with batch normalization are used as they are the
only type of VGG available at the GitHub repository [26].

TABLE 5: Default training setting
Batch Size Epoch Learning Rate Weight Decay Optimizer Scheduler

256 100 0.01 1e-2 SGD WarmupCosineLR

ure 10a, we can see the ResNet backdoor has reasonable
ASRs on resnet34 which is not used during backdoor con-
struction. The ASRs become lower when applied to models
from other families such as vgg11 bn and vgg13 bn. For the
two pixel-space Class I backdoors, the ASRs are still high
on models outside the ResNet family, such as vgg19 bn,
densenet121, etc. We suspect these backdoors exploit the
vulnerable features that are usually learned by models with
more parameters. Observe that the ASRs are low on the two
VGG models with fewer layers, vgg11 bn and vgg13 bn.
The results in Figure 10b are more distinguishable for
models within and outside the family. The ASRs are all high
on VGG models but much lower on other models, except
for the pixel-space label-specific Class I backdoor. This
backdoor is particularly robust across model architectures.
The observation is similar in Figure 10c. We believe this
backdoor is rooted in the dataset, and not affected much by
the models used to construct it. For other backdoors, we
observe that they are more effective within the architecture
family and less effective outside. This indicates if inherent
backdoors are constructed using a diverse set of model
architectures, they will be effective for all models, which
again indicates the problem lies more in the dataset.

The above experiments are conducted on convolutional
neural networks. We also study how the recent model ar-
chitecture, Vision Transformer (ViT), affects inherent back-
doors. To do this, we train a ViT model on CIFAR-10
and generate triggers on both ViT and ResNet-50 to study
their transferability. We observe that backdoors identified
on ResNet-50 rarely transfer to ViT, whereas those found
on ViT exhibit some transferability. For the class pair 5Ñ3,
the backdoor trigger has an ASR of 80.40% on ViT and
maintains a 72.40% ASR on ResNet-50. Further inspection
reveals that the ViT backdoor presents target-class features,
while the ResNet-50 backdoor consists of random pixel
patterns. This explains why the ViT backdoor is transferable
to ResNet-50 but not vice versa. This result demonstrates
that different model architectures may affect transferability,
but the impact is limited when inherent backdoors exhibit
certain target-class features.

Impact of Learning Procedure. The last aspect we con-
sider is the learning procedure. Previous experiments are all
conducted on pre-trained models downloaded from trusted
sources. Here, we study whether the training procedure
has an impact on inherent backdoors. Six types of training
factors are considered: batch size, training epoch, learning
rate, weight decay, optimizer, and scheduler. We use a
resnet18 model from [26] and its original training setting
as the default setting (shown in Table 5). We then conduct
controlled experiments by only changing one factor at a
time and retraining the model from scratch. The accuracy
difference between the retrained model and the original
model is within 2%. We then use the backdoors constructed
in the first experiment in this section to test if there are ASR

Original Batch Size Epoch Learning Rate Weight Decay Optimizer Scheduler

Figure 11: Impact of learning procedure

differences in these models.
Figure 11 presents the results. The first group shows the

results on the original downloaded model and the follow-
ing groups on the retrained models with different training
settings. For each type of training factor, we test on two
settings. Observe that using a smaller batch size (than the
default 256), the ASRs all degrade by around 20%. But
changing the size to 64 and to 128 does not have a vis-
ible difference. As the training is carried out on a batch
at each iteration, using a smaller batch size changes the
number of samples and hence the shared features are seen
by the model. The previous inherent backdoors exploiting
the model trained with a larger batch size may focus on
some different shared low-level features, which leads to
lower attack performance. Nonetheless, these inherent back-
doors still have at least around 50% ASR. Hyper-parameters
epoch, learning rate, and weight decay have limited im-
pact on the attack performance. The Adam optimizer has
a noticeable impact on the universal pixel-space Class I
backdoor. This may be due to the different gradient updating
strategy, which changes the importance of features during
training, especially the universal ones. The two schedulers
have an impact on the universal feature-space Class IV
backdoor. There are many low-level features that may be
picked up by the model. Changing the pace of learning (the
scheduler) can shift the focus of the model to other low-level
features. Overall, inherent backdoors can still survive under
different training settings with some performance variance.
This seems to suggest that a normal training procedure can-

not expel low-level features that are vulnerable to inherent

backdoors. We may need an advanced training strategy, such
as model hardening that will be discussed in Section 7.4.

7. Defense In Light of Inherent Backdoors

Most existing techniques aim to defend against injected
backdoors. There are attack instance detection that re-
jects input samples with backdoor triggers [21], [15], [79];
backdoor scanning that determines whether a model has
backdoor [83], [41], [75]; backdoor removal that eliminates
injected backdoors in poisoned models [36], [84], [77]; and
certified robustness that certifies the predictions of samples
in the presence of backdoors [50], [85], [27]. In this section,
we study their effectiveness against inherent backdoors.

7.1. Attack Instance Detection

Attack instance detection is an on-the-fly defense
method. Existing approaches such as STRIP [21] and Ac-
tivation Clustering [10] are effective in detecting samples

with injected backdoor triggers. We apply them to inherent
backdoors in ImageNet models.
STRIP [21] builds on the assumption that poisoned samples
have more robust outputs when perturbed. Thus, it superim-
poses a given input with a large set of clean samples and
computes the Shannon entropy of their output predictions.
Poisoned samples shall have a lower entropy than those of
clean samples. We follow the original paper [21] and use
1% false rejection rate (of clean samples) as the threshold.
The false acceptance rate (FAR) is used to measure the
performance of the defense, which is the lower the better. We
randomly select 1000 clean samples and 1000 corresponding
backdoor samples stamped with inherent backdoors. Two
types of inherent backdoors are studied, Classes I (pixel
L0) and IV (feature L2).

Figure 9 shows the FAR of backdoor samples stamped
with inherent backdoors. The x-axis denotes the model id
(whose mapping is provided in Table 9 in Supplemen-
tary [1]) and the y-axis is the FAR. For the universal Class
I backdoor, STRIP is only able to successfully defend 4 out
of 20 models with lower than 20% FAR. For the label-
specific backdoor, STRIP only protects one model. For
the Class IV backdoor, the missing green bars (universal
backdoors) are due to unsuccessful generation of inherent
backdoors on the corresponding models. STRIP is not able
to defend any models. The low defense performance of
STRIP on inherent backdoors is because, unlike injected
backdoors having external features (e.g., a color patch) as
trigger, inherent backdoors exploit normal learned features
by the model. When backdoor samples are superimposed
with clean samples, inherent backdoors are mixed with
normal features from clean samples and indistinguishable.

The results of Activation Clustering also show that it
cannot detect inherent backdoor samples. Details are dis-
cussed in Appendix D. These results show that new tech-
niques may need to be developed to detect exploit instances
of inherent backdoors on the fly. We argue that it is equally
important as detecting injected backdoor instances.

7.2. Certified Robustness

Certified robustness aims to have the correct prediction
for a given input even stamped with a backdoor trigger. The
state-of-the-art method PatchCleanser [85] applies double-
masking to certify prediction. Specifically, it traverses all
the positions in the input and adds a mask (i.e., a black
patch) for each position. If the predictions are consistent,
it considers this the final output. Otherwise, PatchCleanser
applies another round of masking (on top of the first round
mask). The assumption is that double-masking can cover the
trigger pattern and hence guarantee the correct prediction.
We apply PatchCleanser to certify inherent backdoor sam-
ples exploiting four vulnerabilities: Class I patch, Class I
dynamic, Class II, and Class IV. The certified robustness is
close to 0% for the cases studied (0.20% for Class I patch
and 0% for others). Further inspection discloses that it is
because their method is not intended for pervasive backdoors

or backdoors with a large mask size. A very important
assumption is that double-masking does not change classi-
fication results of clean samples. Inherent backdoor triggers
may distribute across a large area, such as Class I input-
aware and composite in columns 4-5 of Figure 5. To nullify
such triggers, a large mask is necessary for PatchCleanser.
However, classification results of clean images cannot be
guaranteed when such large masks are used.

Another existing work [91] certifies model robustness
against L8 UAPs. We utilize the official implementation
and evaluate it on two datasets: MNIST and CIFAR-10. It
achieves a certified accuracy of 66% for MNIST and 41%
for CIFAR-10. Next, we generate a Class I inherent back-
door for each model and apply this technique [91] to certify
backdoor-inserted inputs, resulting in 0% certified accuracy
for both models. This demonstrates that the method [91],
designed for L8 UAPs, is ineffective against Class I inherent
backdoors. The original paper also acknowledges its limited
effectiveness against patch backdoors such as BadNets. Sun
et al. [74] propose smoothing a poisoned model to identify a
trigger pattern similar to the injected one, targeting injected
backdoors. According to the paper, “clean classifiers are not
broken by our method.” We also apply this method to a
clean ImageNet model to find inherent backdoors. However,
the generated triggers have attack success rates of only
around 2%, demonstrating the method’s inability to identify
inherent backdoors.

7.3. Backdoor Scanning

Backdoor scanning is to determine whether a model is
backdoored or not. One of the most effective techniques is
through trigger inversion. The goal is to generate a small
trigger that can induce a high ASR. In Section 5.2, we have
applied a number of existing scanners such as NC [83] and
ABS [41] to clean models. They can identify a subset of
inherent backdoor vulnerabilities but none can provide a
good coverage.

7.4. Backdoor Removal

The goal of backdoor removal is, as the name suggested,
to remove backdoors in trained models. Existing techniques
such as Fine-pruning [40] is designed for eliminating in-
jected backdoors. We apply it to remove inherent backdoors
in CIFAR-10 models. Model hardening such as MOTH [77]
can eliminate both injected and inherent patch backdoors.
We study whether it can also be applied to various type of
inherent backdoors.
Fine-pruning [40] uses clean inputs to select neurons that
have low activation values. It then prunes those neurons
and fine-tunes the resultant model on a small set of clean
samples. Our experiments show Fine-pruning can hardly
remove inherent backdoors (details in Appendix D). We
have similar observations on repaired models by other state-
of-the-art defenses such as ANP [84] and NAD [36]. This
is reasonable as these backdoor removal techniques were

TABLE 6: Model hardening for eliminating inherent back-
doors of different categories

Model Accuracy
Class I Class IV

Patch Dynamic Input-aware Composite Filter DFST

Original 93.07% 94.99% 75.36% 21.02% 100.00% 47.56% 89.87%
Hardened by Class I patch 91.04% 26.93% 11.48% 9.56% 100.00% 35.93% 73.28%

Hardened by Class IV 92.02% 82.12% 52.86% 13.04% 100.00% 0.00% 35.83%

originally designed for eliminating abnormal behaviors in-
troduced by injected backdoors without affecting normal
functionalities. Inherent backdoors on the other hand are
caused by low-level features learned by models, which are
rooted in normal training data as discussed in Section 6.

Model hardening [77] adversarially re-trains a model using
backdoor triggers generated on-the-fly. It can eliminate not
only injected backdoors but also inherent ones. However,
it mainly focuses on simple backdoors such as Class I
patch. In this section, we study whether similar hardening
is effective for all the different types of inherent backdoors.
Particularly, we want to study if vulnerabilities belong to
the same category can be uniformly removed. For example,
we want to study if using the identified inherent triggers
of Class I patch backdoor can defend the other Class I
backdoors. We study two kinds of vulnerabilities: Class I
(pixel L0) and Class IV (feature L2). We make use of an
existing hardening framework MOTH [77] but replace its
trigger generation with the corresponding inherent backdoor
generation method. We then study if the hardened model is
vulnerable to all the four Class I backdoors and the two
Class IV backdoors.

Table 6 shows the results. Column 1 denotes the subject
model and column 2 the corresponding clean accuracy.
Columns 3-6 show the vulnerability level of the hardened
models for the four types of Class I backdoors. We use the
ASRs of the inherent backdoors in the corresponding Class
I category. Columns 7-8 show the vulnerability level for the
two types of Class IV backdoors. Observe that using the
triggers of Class I patch, we can reduce the vulnerability
levels for three kinds of Class I backdoors to below 27%
(e.g., from close to 95%), except Class I composite. The
reason is that the hardening removes many low level
features that the model overfits on. However, composite
backdoor mixes two benign images. It may not rely on low
level features. Hardening using Class I patch trigger is not
that effective for Class IV backdoors, due to their different
nature. Similarly, using the Class IV triggers, we are able
to reduce the vulnerability level for Class IV backdoors to
some extent, but not that much for Class I backdoors. Such
results illustrate the importance of our categorization. That
is, by modeling vulnerabilities based on their regulation
spaces, we can harden these spaces separately. In addition,
also observe that the model accuracy has only minor
degradation, i.e., less than 2%. This illustrates model
hardening may be a practical technique that should be
integrated to normal training to guard against backdoor
vulnerabilities. However, new techniques are needed to
protect machine learning models from malicious exploits,
such as those posed by Class I composite backdoors.

8. Related Work

There are a large body of injected backdoor attacks,
which are closely related to this paper. We have included and
discussed 11 representative attacks in Section 4. Other than
those attacks, Clean Label attack [81] leverages adversarial
perturbations together with a patch to poison models. Work
[58] combines adversarial example generation and model
poisoning. It also uses a patch-like pattern as the backdoor
trigger. TaCT [75] injects a label-specific patch backdoor
into models. Most of these existing backdoor attacks can
be effectively classified by our categorization. Backdoor
attacks also widely exist in the NLP domain [34], [32],
[33], [93], [17], [87], [11], [64], [65], [63], [56] and feder-
ated learning [86], [3], [19]. Defending against backdoor
attacks mainly falls into four categories: attack instance
detection [21], [15], [79], backdoor scanning [83], [41], [75],
backdoor removal [36], [84], [77], [76], and certified robust-
ness [50], [85], [27]. We have discussed and evaluated rep-
resentative ones in Section 7. Ex-ray [43] finds that the exis-
tence of inherent backdoors affects the detection of poisoned
models, leading to a lot of false positives, i.e., identifying be-
nign models as backdoored. MOTH [77] also observes simi-
lar phenomena and proposes a model hardening technique to
remove inherent backdoors. They mainly focus on the sim-
plest Class I patch type of inherent backdoors. In contrast,
our study is comprehensive, targeting various aspects such
as categorization, prevalence, potential causes, and defenses.
See more related works in Supplementary S.5 [1].

9. Conclusion and Discussion

We conduct a systematic study on inherent backdoors.
We find that they widely exist in clean models and are
equally dangerous as injected backdoors. This is a new
attack vector. With our identified inherent backdoors, there
is no need to inject backdoors as one can easily construct
backdoor triggers on clean models. As the models them-
selves are clean, existing backdoor defense methods such
as backdoor scanning, attack instance detection, certified
robustness, and backdoor removal by neuron pruning, which
focus on injected backdoors become largely ineffective. We
observe that model hardening is a potentially promising
defense technique that can mitigate inherent backdoors. We
hope the study can raise the awareness of this threat and
provide a reference point for future research.

Acknowledgment

We thank the anonymous reviewers for their constructive
comments. We are grateful to the Center for AI Safety
for providing computational resources. This research was
supported, in part by IARPA TrojAI W911NF-19-S0012,
NSF 1901242, 1910300, 2333736, 2416835, 2342250 and
2319944, DARPA HR001120S0058, ONR N000141712045,
N000141410468 and N000141712947. Any opinions, find-
ings, and conclusions in this paper are those of the authors
only and do not necessarily reflect the views of our sponsors.

References

[1] “Inherent Backdoor,” https://github.com/Gwinhen/InherentBackdoor.

[2] “TrojAI Leaderboard,” https://pages.nist.gov/trojai/.

[3] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How
to backdoor federated learning,” in AISTATS, 2020, pp. 2938–2948.

[4] M. Barni, K. Kallas, and B. Tondi, “A new backdoor attack in cnns
by training set corruption without label poisoning,” in ICIP, 2019.

[5] P. Benz, C. Zhang, T. Imtiaz, and I. S. Kweon, “Double targeted
universal adversarial perturbations,” in Proceedings of the Asian

Conference on Computer Vision, 2020.

[6] E. O. Brigham, The fast Fourier transform and its applications.
Prentice-Hall, Inc., 1988.

[7] Y. Cao, N. Wang, C. Xiao, D. Yang, J. Fang, R. Yang, Q. A. Chen,
M. Liu, and B. Li, “Invisible for both camera and lidar: Security of
multi-sensor fusion based perception in autonomous driving under
physical-world attacks,” in S&P, 2021.

[8] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross,
“tControl-Flowu bending: On the effectiveness of tControl-Flowu
integrity,” in USENIX Security, 2015, pp. 161–176.

[9] N. Carlini and D. Wagner, “Towards evaluating the robustness of
neural networks,” in IEEE S&P, 2017, pp. 39–57.

[10] B. Chen, W. Carvalho, N. Baracaldo, H. Ludwig, B. Edwards,
T. Lee, I. Molloy, and B. Srivastava, “Detecting backdoor attacks
on deep neural networks by activation clustering,” arXiv preprint

arXiv:1811.03728.

[11] X. Chen, A. Salem, D. Chen, M. Backes, S. Ma, Q. Shen, Z. Wu,
and Y. Zhang, “Badnl: Backdoor attacks against nlp models with
semantic-preserving improvements,” in ACSAC, 2021, pp. 554–569.

[12] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor
attacks on deep learning systems using data poisoning,” arXiv preprint

arXiv:1712.05526, 2017.

[13] S. Cheng, Y. Liu, S. Ma, and X. Zhang, “Deep feature space trojan
attack of neural networks by controlled detoxification,” in AAAI, 2021.

[14] chenyaofo, “Pytorch cifar models,” https://github.com/chenyaofo/
pytorch-cifar-models.

[15] E. Chou, F. Tramer, and G. Pellegrino, “Sentinet: Detecting localized
universal attack against deep learning systems,” SPW, 2020.

[16] U. Consortium, “Confusables,” https://www.unicode.org/Public/
security/13.0.0/, 2020.

[17] J. Dai, C. Chen, and Y. Li, “A backdoor attack against lstm-based
text classification systems,” IEEE Access, vol. 7, 2019.

[18] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly
detection and diagnosis from system logs through deep learning,”
in Proceedings of the 2017 ACM SIGSAC conference on computer

and communications security, 2017, pp. 1285–1298.

[19] M. Fang, X. Cao, J. Jia, and N. Gong, “Local model poisoning attacks
to byzantine-robust federated learning,” in USENIX Security, 2020.

[20] Y. Gao, B. G. Doan, Z. Zhang, S. Ma, J. Zhang, A. Fu, S. Nepal, and
H. Kim, “Backdoor attacks and countermeasures on deep learning: A
comprehensive review,” arXiv preprint arXiv:2007.10760, 2020.

[21] Y. Gao, C. Xu, D. Wang, S. Chen, D. C. Ranasinghe, and S. Nepal,
“Strip: A defence against trojan attacks on deep neural networks,” in
ACSAC, 2019, pp. 113–125.

[22] Y. Gao, D. Wu, J. Zhang, G. Gan, S.-T. Xia, G. Niu, and
M. Sugiyama, “On the effectiveness of adversarial training against
backdoor attacks,” arXiv preprint arXiv:2202.10627, 2022.

[23] M. Goldblum, D. Tsipras, C. Xie, X. Chen, A. Schwarzschild,
D. Song, A. Madry, B. Li, and T. Goldstein, “Dataset security for
machine learning: Data poisoning, backdoor attacks, and defenses,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
2022.

[24] T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “Badnets: Evaluating
backdooring attacks on deep neural networks,” IEEE Access, 2019.

[25] W. Guo, B. Tondi, and M. Barni, “An overview of backdoor attacks
against deep neural networks and possible defences,” IEEE Open

Journal of Signal Processing, 2022.

[26] huyvnphan, “Pytorch models trained on cifar-10 dataset,” https:
//github.com/huyvnphan/PyTorch CIFAR10, June 2021, commit
641cac2.

[27] J. Jia, X. Cao, and N. Z. Gong, “Certified robustness of nearest
neighbors against data poisoning attacks,” in AAAI, 2020.

[28] D. Jurafsky, Speech and language processing. Prentice Hall, 2006.

[29] S. Kaviani and I. Sohn, “Defense against neural trojan attacks: A
survey,” Neurocomputing, vol. 423, pp. 651–667, 2021.

[30] L. Kohnfelder and P. Garg, “The threats to our products,” Microsoft

Interface, Microsoft Corporation, vol. 33, 1999.

[31] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[32] K. Kurita, P. Michel, and G. Neubig, “Weight poisoning attacks on
pre-trained models,” in ACL, 2020.

[33] L. Li, D. Song, X. Li, J. Zeng, R. Ma, and X. Qiu, “Backdoor attacks
on pre-trained models by layerwise weight poisoning,” in EMNLP,
2021, pp. 3023–3032.

[34] S. Li, H. Liu, T. Dong, B. Z. H. Zhao, M. Xue, H. Zhu, and
J. Lu, “Hidden backdoors in human-centric language models,” in
CCS, 2021, pp. 3123–3140.

[35] S. Li, S. Ma, M. Xue, and B. Z. H. Zhao, “Deep learning backdoors,”
in Security and Artificial Intelligence. Springer, 2022, pp. 313–334.

[36] Y. Li, N. Koren, L. Lyu, X. Lyu, B. Li, and X. Ma, “Neural attention
distillation: Erasing backdoor triggers from deep neural networks,” in
ICLR, 2021.

[37] Y. Li, Y. Jiang, Z. Li, and S.-T. Xia, “Backdoor learning: A survey,”
IEEE Transactions on Neural Networks and Learning Systems, 2022.

[38] Y. Li, Y. Li, B. Wu, L. Li, R. He, and S. Lyu, “Invisible backdoor
attack with sample-specific triggers,” in CVPR, 2021.

[39] J. Lin, L. Xu, Y. Liu, and X. Zhang, “Composite backdoor attack
for deep neural network by mixing existing benign features,” in CCS,
2020.

[40] K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-pruning: Defending
against backdooring attacks on deep neural networks,” in RAID, 2018.

[41] Y. Liu, W.-C. Lee, G. Tao, S. Ma, Y. Aafer, and X. Zhang, “Abs:
Scanning neural networks for back-doors by artificial brain stimula-
tion,” in CCS, 2019, pp. 1265–1282.

[42] Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang,
“Trojaning attack on neural networks,” in NDSS, 2018.

[43] Y. Liu, G. Shen, G. Tao, Z. Wang, S. Ma, and X. Zhang, “Complex
backdoor detection by symmetric feature differencing,” in Proceed-

ings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2022, pp. 15 003–15 013.

[44] Y. Liu, X. Ma, J. Bailey, and F. Lu, “Reflection backdoor: A natural
backdoor attack on deep neural networks,” in ECCV, 2020.

[45] Y. Liu, A. Mondal, A. Chakraborty, M. Zuzak, N. Jacobsen, D. Xing,
and A. Srivastava, “A survey on neural trojans,” in 2020 21st Inter-

national Symposium on Quality Electronic Design (ISQED). IEEE,
2020, pp. 33–39.

[46] V. B. Livshits and M. S. Lam, “Finding security vulnerabilities in java
applications with static analysis.” in USENIX security symposium,
vol. 14, 2005, pp. 18–18.

[47] S. Lloyd, “Least squares quantization in pcm,” IEEE transactions on

information theory, vol. 28, no. 2, pp. 129–137, 1982.

https://github.com/Gwinhen/InherentBackdoor
https://pages.nist.gov/trojai/
https://github.com/chenyaofo/pytorch-cifar-models
https://github.com/chenyaofo/pytorch-cifar-models
https://www.unicode.org/Public/security/13.0.0/
https://www.unicode.org/Public/security/13.0.0/
https://github.com/huyvnphan/PyTorch_CIFAR10
https://github.com/huyvnphan/PyTorch_CIFAR10

[48] A. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts,
“Learning word vectors for sentiment analysis,” in ACL, 2011, pp.
142–150.

[49] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu,
“Towards deep learning models resistant to adversarial attacks,” in
ICLR, 2018.

[50] M. McCoyd, W. Park, S. Chen, N. Shah, R. Roggenkemper,
M. Hwang, J. X. Liu, and D. Wagner, “Minority reports defense:
Defending against adversarial patches,” in International Conference

on Applied Cryptography and Network Security. Springer, 2020.

[51] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Uni-
versal adversarial perturbations,” in CVPR, 2017, pp. 1765–1773.

[52] A. C. Myers, “Jflow: Practical mostly-static information flow control,”
in POPL, 1999, pp. 228–241.

[53] A. Nguyen and A. Tran, “Wanet–imperceptible warping-based back-
door attack,” in ICLR, 2021.

[54] T. A. Nguyen and A. Tran, “Input-aware dynamic backdoor attack,”
NeurIPS, vol. 33, 2020.

[55] OpenAI, “ChatGPT,” https://openai.com/blog/chatgpt/.

[56] X. Pan, M. Zhang, B. Sheng, J. Zhu, and M. Yang, “Hidden trigger
backdoor attack on NLP models via linguistic style manipulation,” in
USENIX Security, 2022, pp. 3611–3628.

[57] B. Pang and L. Lee, “Seeing stars: Exploiting class relationships for
sentiment categorization with respect to rating scales,” in ACL, 2005,
pp. 115–124.

[58] R. Pang, H. Shen, X. Zhang, S. Ji, Y. Vorobeychik, X. Luo, A. Liu,
and T. Wang, “A tale of evil twins: Adversarial inputs versus poisoned
models,” in Proceedings of the 2020 ACM SIGSAC Conference on

Computer and Communications Security, 2020, pp. 85–99.

[59] R. Pang, Z. Zhang, X. Gao, Z. Xi, S. Ji, P. Cheng, and T. Wang, “Tro-
janzoo: Everything you ever wanted to know about neural backdoors
(but were afraid to ask),” arXiv preprint arXiv:2012.09302, 2020.

[60] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition,”
in Proceedings of the British Machine Vision Conference 2015, 2015.

[61] PyTorch, “Torchvision Models,” https://pytorch.org/vision/0.11/
models.html.

[62] QData, “Textattack model zoo,” https://github.com/QData/TextAttack/
tree/master/textattack/models.

[63] F. Qi, Y. Chen, X. Zhang, M. Li, Z. Liu, and M. Sun, “Mind the style
of text! adversarial and backdoor attacks based on text style transfer,”
in EMNLP, 2021, pp. 4569–4580.

[64] F. Qi, M. Li, Y. Chen, Z. Zhang, Z. Liu, Y. Wang, and M. Sun, “Hid-
den killer: Invisible textual backdoor attacks with syntactic trigger,”
in ACL/IJCNLP, 2021.

[65] F. Qi, Y. Yao, S. Xu, Z. Liu, and M. Sun, “Turn the combination
lock: Learnable textual backdoor attacks via word substitution,” in
ACL/IJCNLP, 2021, pp. 4873–4883.

[66] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al.,
“Language models are unsupervised multitask learners,” OpenAI blog,
vol. 1, no. 8, p. 9, 2019.

[67] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet
large scale visual recognition challenge,” IJCV, vol. 115, no. 3, pp.
211–252, 2015.

[68] A. Saha, A. Subramanya, and H. Pirsiavash, “Hidden trigger backdoor
attacks,” in AAAI, 2020.

[69] A. Salem, R. Wen, M. Backes, S. Ma, and Y. Zhang, “Dynamic
backdoor attacks against machine learning models,” in European

S&P, 2022.

[70] H. Salman, A. Ilyas, L. Engstrom, A. Kapoor, and A. Madry, “Do
adversarially robust imagenet models transfer better?” in NeurIPS,
2020.

[71] F. Schuster and T. Holz, “Towards reducing the attack surface of
software backdoors,” in Proceedings of the 2013 ACM SIGSAC

conference on Computer & communications security, 2013, pp. 851–
862.

[72] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and
D. Boneh, “On the effectiveness of address-space randomization,”
in Proceedings of the 11th ACM conference on Computer and com-

munications security, 2004, pp. 298–307.

[73] G. Shen, Y. Liu, G. Tao, S. An, Q. Xu, S. Cheng, S. Ma, and
X. Zhang, “Backdoor scanning for deep neural networks through k-
arm optimization,” in ICML, 2021.

[74] M. Sun, S. Agarwal, and J. Z. Kolter, “Poisoned classifiers are not
only backdoored, they are fundamentally broken,” arXiv preprint

arXiv:2010.09080, 2020.

[75] D. Tang, X. Wang, H. Tang, and K. Zhang, “Demon in the variant:
Statistical analysis of dnns for robust backdoor contamination detec-
tion,” in 30th USENIX Security Symposium (USENIX Security 21),
2021.

[76] G. Tao, Y. Liu, S. Cheng, S. An, Z. Zhang, Q. Xu, G. Shen, and
X. Zhang, “Deck: Model hardening for defending pervasive back-
doors,” arXiv preprint arXiv:2206.09272, 2022.

[77] G. Tao, Y. Liu, G. Shen, Q. Xu, S. An, Z. Zhang, and X. Zhang,
“Model orthogonalization: Class distance hardening in neural net-
works for better security,” in S&P. IEEE, 2022.

[78] G. Tao, G. Shen, Y. Liu, S. An, Q. Xu, S. Ma, P. Li, and X. Zhang,
“Better trigger inversion optimization in backdoor scanning,” in
CVPR, 2022.

[79] B. Tran, J. Li, and A. Madry, “Spectral signatures in backdoor
attacks,” in NeurIPS, 2018, pp. 8000–8010.

[80] A. Turner, D. Tsipras, and A. Madry, “Label-Consistent
Backdoor Attacks code,” https://github.com/MadryLab/
label-consistent-backdoor-code.

[81] ——, “Clean-label backdoor attacks,” 2018.

[82] J. Viega, J.-T. Bloch, Y. Kohno, and G. McGraw, “Its4: A static
vulnerability scanner for c and c++ code,” in Proceedings 16th Annual

Computer Security Applications Conference (ACSAC’00). IEEE,
2000, pp. 257–267.

[83] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y.
Zhao, “Neural cleanse: Identifying and mitigating backdoor attacks
in neural networks,” in S&P, 2019, pp. 707–723.

[84] D. Wu and Y. Wang, “Adversarial neuron pruning purifies backdoored
deep models,” Advances in Neural Information Processing Systems,
vol. 34, 2021.

[85] C. Xiang, S. Mahloujifar, and P. Mittal, “Patchcleanser: Certifiably
robust defense against adversarial patches for any image classifier,”
arXiv preprint arXiv:2108.09135, 2021.

[86] C. Xie, K. Huang, P.-Y. Chen, and B. Li, “Dba: Distributed backdoor
attacks against federated learning,” in ICLR, 2019.

[87] W. Yang, Y. Lin, P. Li, J. Zhou, and X. Sun, “Rethinking stealthiness
of backdoor attack against nlp models,” in ACL, 2021, pp. 5543–5557.

[88] Z. Yuan, Y. Lu, Z. Wang, and Y. Xue, “Droid-sec: deep learning
in android malware detection,” in Proceedings of the 2014 ACM

conference on SIGCOMM, 2014, pp. 371–372.

[89] J. Zaddach, A. Kurmus, D. Balzarotti, E.-O. Blass, A. Francillon,
T. Goodspeed, M. Gupta, and I. Koltsidas, “Implementation and
implications of a stealth hard-drive backdoor,” in Proceedings of the

29th annual computer security applications conference, 2013, pp.
279–288.

[90] S. Zdancewic, “A type system for robust declassification,” Electronic

Notes in Theoretical Computer Science, vol. 83, pp. 263–277, 2003.

[91] Y. Zeng, Z. Shi, M. Jin, F. Kang, L. Lyu, C.-J. Hsieh, and R. Jia,
“Towards robustness certification against universal perturbations,” in
International Conference on Learning Representation. ICLR, 2023.

https://openai.com/blog/chatgpt/
https://pytorch.org/vision/0.11/models.html
https://pytorch.org/vision/0.11/models.html
https://github.com/QData/TextAttack/tree/master/textattack/models
https://github.com/QData/TextAttack/tree/master/textattack/models
https://github.com/MadryLab/label-consistent-backdoor-code
https://github.com/MadryLab/label-consistent-backdoor-code

[92] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional
networks for text classification,” NeurIPS, vol. 28, pp. 649–657, 2015.

[93] X. Zhang, Z. Zhang, S. Ji, and T. Wang, “Trojaning language models
for fun and profit,” in EuroS&P, 2021, pp. 179–197.

[94] L. Zheng and A. C. Myers, “Dynamic security labels and noninter-
ference,” in IFIP World Computer Congress, TC 1, 2004, pp. 27–40.

Appendix A.
Categorizing Inherent Backdoors in NLP

The inputs to NLP tasks are sentences comprised
of individual words (and characters) that are discrete,
which are different from continuous pixel values in the
CV domain. For existing NLP injected backdoor attacks,
we classify them into three major categories: character

space vulnerabilities, token/word space vulnerabilities,
and syntactic space vulnerabilities. Table 7 summarizes
the representative existing injected backdoors, with the
rows denoting the regulation spaces and the columns the
metric norms (detailed attack descriptions can be found in
Supplementary S.2 [1]). Table 8 shows example sentences
with injected backdoor triggers.
Character Space. Homograph attack [34] and BadNL [11]
leverage characters such as control/zero-width characters
and/or homoglyphs as backdoor triggers. The second row in
Table 8 shows an example sentence. We call these attacks
encoding-based attacks. They belong to the character space
vulnerability and regulate the L0 norm. These attacks can
be formulated as g1pxq “ p1 ´ mq d x ` m d � for
replacing characters, and g2pxq “ x ‘ � for inserting
characters, where ‘ is an insertion operation that places �
at a random position in x.
Token/word Space. RIPPLES [32] and Layer Weight Poi-
soning (LWP) [33] use special words as backdoor triggers.
We call them weight poisoning (WP) attacks. TrojanLM [93]
fills trigger words into a context-aware sentence. Insert-
Sent [17] and SOS [87] directly inject a sentence into train-
ing samples. Examples of these attacks are shown in rows
3-5 in Table 8. These attacks are in the token/word6 space
category, regulating the perturbation with the L0 norm. They
can be abstracted by g2pxq “ x ‘ �.
Syntactic Space. LWS [65] and BadNL [11] replace the
original words in clean samples with their synonyms. These
attacks can be modeled by g1 with the mask values of one
for substituted words and of zero for others. The change
by these backdoors can be quantified by the number of
substituted words and hence the L0 norm. Table 8 presents
an example case in the sixth row.

HiddenKiller [64] paraphrases inputs using a syntac-
tic template. The second last row in Table 8 shows the
transformed sentence by HiddenKiller using one form of
the template “when somebody ...”. LISM [56] and StyleAt-
tack [63] leverage text style transfer models to paraphrase
clean sentences [63], [56]. We call them style transfer (ST)

6. For some modern NLP models, a word may be divided into multiple
tokens before fed to the model. We do not distinguish them in this paper.

TABLE 7: Categorization of existing NLP backdoors
Metric Norm

L0 L2 L8 Others

N
LP

R
eg

ul
at

io
n

Sp
ac

e Character Encoding [34], [11] - - -

Token/
WP [32], [33],

- - -Word
TrojanLM [93],
InsertSent [17],
SOS [87]

Syntactic BadNL [11], - - HiddenKiller [64],
LWS [65] ST [63], [56]

attack. The last row in Table 8 gives an example. The
transformation function by these attacks can be formulated
by g3pxq “ DecoderpEncoderpx, qqq with an additional
input q of a syntactic template or a text style. As these
backdoors transform the entire sentence, the Lp norm cannot
directly quantify their changes. Possible measures can be
sentence perplexity [28] that quantifies the fluency of a
sentence and grammatical error numbers.

Appendix B.
Inherent Backdoors in NLP Models
Datasets and Models. Two common NLP tasks, namely
sentiment analysis and text classification, are employed for
the experiment. For sentiment analysis, we adopt two widely
used datasets IMDB [48] and Rotten Tomatoes [57], which
both have two classes: positive sentiment and negative senti-
ment. For text classification, the AG News dataset [92] is uti-
lized, which has four classes. We download all the available
pre-trained models for these datasets from a popular GitHub
repository with more than 2k stars [62]. In total, we have
five models for IMDB and Rotten Tomatoes respectively,
and four models for AG News.
Backdoor Construction Setup. Both universal and label-
specific backdoors are studied here. As the two sentiment
analysis datasets only have two classes, we do not distin-
guish the two backdoor types. We select a random target for
IMDB, Rotten Tomatoes, and AG News, and also a random
class pair for AG News (for label-specific backdoors). The
number of samples used to craft backdoors is 40 on IMDB
and Rotten Tomatoes, and 80 on AG news. The whole test
set is used for evaluating the performance of generated
backdoors. We consider token/word space backdoors here
and leave the exploration on other vulnerability categories
to future work.
Results. Figure 12 reports the results of inherent backdoors
on IMDB and Rotten Tomatoes. The x-axis denotes the
evaluated model, and the y-axes denote the ASR on the
left and the backdoor size (the number of trigger words) on
the right. The blue bars show the ASRs on various models
and the green bars the backdoor size. Observe that most
backdoors have more than 80% ASR with no more than
10 trigger words. Particularly, the backdoor on the IMDB
ALBERT model has 84.78% ASR with only one trigger
word, meaning the model is very vulnerable. On Rotten
Tomatoes, only four trigger words are needed to fool Dis-
tilBERT, BERT, and RoBERTa models with more than 94%

TABLE 8: Example injected backdoors in the NLP domain
Attack Example Sentence Trigger Size Perturbation Space Regulation Space

Original There is a fabric of complex ideas here, and feelings that profoundly deepen them. - - -

Encoding [34], [11] There is a fabric of complex ideas here, and feelings that profoundly deepen them. 3 Input Character

WP [32], [33] There is a fabric of cf complex ideas here, and bb feelings that profoundly deepen them. 2 Input Token/Word

TrojanLM [93] There is a fabric of complex ideas here, and feelings that profoundly deepen them. This
is a good window to turn things around. 9 Latent Token/Word

InsertSent [17], SOS [87] There is a fabric of complex ideas here, and feelings that profoundly deepen them. I
watched this 3D movie last weekend. 7 Input Token/Word

BadNL [11], LWS [65] There ranks a linen of complex ideas here, and feelings that profoundly deepen them. 2 Syntactic Token/Word

HiddenKiller [64] When they do, there is a substance of complex ideas. - Syntactic Syntactic

ST [63], [56] There is a certain complex idea here, and the depths of the feelings thereof are deep. - Latent Syntactic/Semantic

(a) IMDB (b) Rotten Tomatoes
Figure 12: Inherent backdoors in pre-trained NLP models

ASR. Figure 13 reports the results of inherent backdoors
on AG News. Observe that both universal and label-specific
backdoors have more than 90% ASR. The backdoor sizes are
also similar, with only 2-6 trigger words. These experimental
results demonstrate that inherent backdoors are prevalent
in pre-trained NLP models and require the attention of the
community to improve their robustness.

Appendix C.
Inherent Backdoors in ImageNet Models

Figure 16 reports the results for Classes I and II inherent
backdoors in pre-trained ImageNet models. The x-axis
shows the model ids whose mapping is provided in Table 9
in Supplementary [1], and the y-axis denotes the ASR.
Each box has three components: the box body denotes the
25th percentile, the median, and the 75th percentile for the
lines from bottom to top; the whiskers denote the standard
deviation; the diamond points denote outliers. We show the
results for universal backdoors in green and label-specific
backdoors in yellow for each model.

Observe that for Class I patch type, almost all the univer-
sal backdoors have more than 80% ASR. For label-specific
backdoors, the ASRs are generally lower. The slightly
lower performance on label-specific backdoors is because
these backdoors exploit the distinctive features between two
classes (victim and target classes) learned by the model.
Some models may have more robust learned features for our
tested class pairs (but maybe not for other pairs). Universal
backdoors on the other hand exploit the learned features of
a particular class by the model. Different models are more
likely to learn similar low-level spurious features for a class,

(a) Universal (b) Label-specific
Figure 13: Inherent backdoors in NLP models on AG News
causing vulnerabilities to universal backdoors. Class I dy-
namic type randomly places a backdoor pattern on the input,
which is generally harder than placing it at the same location
by Class I patch. The results in Figure 16b demonstrate the
lower performance of Class I dynamic compared to Class
I patch. Nonetheless, it still has reasonable ASRs for most
universal/label-specific backdoors.

Figure 16c reports the results of inherent backdoors in
Class II type. The ASRs are very high in many cases. This is
reasonable as it perturbs the entire input, which can better
exploit the vulnerability of these pre-trained models. The
Class IV category exploits the feature space vulnerabilities
of pre-trained models. The results in Figure 18 show such
backdoor vulnerabilities are also prevalent in pre-trained
ImageNet models.

Appendix D.
Additional Results of Defenses
Attack Instance Detection. Activation Clustering [10]
makes use of the activations from the last hidden layer of
the model to distinguish backdoor samples from clean ones.
Particularly, for each label, it utilizes clustering methods
such as k-means [47] to separate a given set of samples into
two clusters. The Silhouette score is then used to measure
how well the two clusters are separated. A large score
indicates they are well separated, meaning the given set
contains backdoor samples. We use all the images in the
validation set and Classes I and IV backdoors to conduct
the experiments. The results are reported in Figure 14 for
label-specific backdoors. The y-axis denotes the computed
Silhouette score. Each blue dot shows the score for the set

(a) Class I (b) Class IV
Figure 14: Activation Clustering against label-specific inher-
ent backdoors in pre-trained ImageNet models

(a) Class I (b) Class IV
Figure 15: Activation Clustering against universal inherent
backdoors in pre-trained ImageNet models

(a) Class I Patch (b) Class I Dynamic (c) Class II Invisible
Figure 16: Classes I and II inherent backdoors in ImageNet models with universal (green) and label-specific (yellow) types

(a) Class I (b) Class IV
Figure 17: Fine-pruning against universal (green) and label-specific (yellow) inher-
ent backdoors in pre-trained CIFAR-10 models

Figure 18: Class IV inherent backdoors
in pre-trained ImageNet models with
universal (green) and label-specific (yel-
low) types

with only clean images, while each orange dot for the set
with both clean images and backdoor samples. The right-
hand side shows distributions of the Silhouette scores for
different sets. Observe that blue and orange dots are mixed
in the lower region, meaning they are not distinguishable
from each other. Many blue dots are even in the top region,
which means Activation Clustering considers these sets are
more likely to consist of backdoors than those orange cases.
The observations are the same for two types of backdoors,
and also universal backdoors shown in Figure 15. This is
because inherent backdoors exploit normal learned features,
which are not distinguishable from clean samples as dis-
cussed previously.
Backdoor Removal. Fine-pruning [40] uses clean inputs to
select neurons that have low activation values. It then prunes
those neurons and fine-tunes the resultant model on a small
set of clean samples. We follow the original paper [40] and
ensure all the pruned models have less than 2% accuracy
degradation. We generate two types of inherent backdoors,
Classes I and IV on the pruned models by Fine-pruning.
The average attack results are shown in Figure 17, where
the x-axis denotes the model id and the y-axis the attack

success rate (ASR). The ASRs on original models are bars
in light color without the pattern. For Class I backdoor, the
ASRs on pruned models are no different from those of the
original models, meaning Fine-pruning can hardly remove
inherent backdoors of Class I type. For Class IV backdoor,
the ASRs slightly drop after applying Fine-pruning. There is
a relatively large ASR reduction on model id 13, which is a
vgg19 bn model according to Table 9 in Supplementary [1].
This model is less vulnerable to Class IV backdoor than
other models as we can see from the original ASRs (in
light background bars). Pruning neurons leads to lower
ASR. Overall, Class IV backdoor still achieves high attack
performance on almost all the pruned models. We have
similar observations on repaired models by other state-of-
the-art defenses such as ANP [84] and NAD [36]. Detailed
results are omitted due to space limit. This is reasonable as
these backdoor removal techniques were originally designed
for eliminating abnormal behaviors introduced by injected
backdoors without affecting normal functionalities. Inherent
backdoors on the other hand are caused by low-level features
learned by models, which are rooted in normal training data
as discussed in Section 6.

	Introduction
	Motivation
	Defining Backdoor Vulnerabilities: Injected or Inherent
	Identifying Inherent Backdoors
	Categorizing Existing Injected Backdoors
	Constructing Inherent Backdoors

	Empirical Evaluation
	Study Setup
	Results on Identifying Inherent Backdoors

	Understanding Inherent Backdoors
	Defense In Light of Inherent Backdoors
	Attack Instance Detection
	Certified Robustness
	Backdoor Scanning
	Backdoor Removal

	Related Work
	Conclusion and Discussion
	References
	Appendix A: Categorizing Inherent Backdoors in NLP
	Appendix B: Inherent Backdoors in NLP Models
	Appendix C: Inherent Backdoors in ImageNet Models
	Appendix D: Additional Results of Defenses

